K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016
  • 2.s= 1/30+1/42+1/56+...+ 1/380

2.S= 1/ 5.6 =1/ 6.7 +1/ 7.8 +...+1/ 19.20

2.S= 1/5-1/20

2S= 3/20

10 tháng 3 2017

58/380

10 tháng 3 2017

nó bằng 59/380

11 tháng 5 2021

=1/15+1/21+1/28+......+1/190

=2/2x(1/15+1/21+1/28+...+1/190)

=2/30+2/42+2/56+....+2/380

=2/5x6+2/6x7+2/7x8+......+2/19x20

=2x(1/5-1/6+1/6-1/7+1/7-1/8+....+1/19-1/20)

=2x(1/5-1/20)

=2x3/20

=3/10

11 tháng 5 2021

Easy thế mà k bít làm 

4 tháng 4 2016

\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)

\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)

\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)

\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)

\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)

\(S=\frac{9}{12}\)

\(S=\frac{3}{4}\)

4 tháng 4 2016

S=\(\frac{3}{4}\)

18 tháng 1 2017

\(\frac{9}{11}\)nha kb đi

18 tháng 1 2017

lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)

      =  (4/50 + 3/70) + 2/100

      = 7/120 + 2/100

      = 9/220

17 tháng 4 2018

\(F=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)

\(\Rightarrow F=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{380}\)

\(\Rightarrow F=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{19.20}\)

\(\Rightarrow F=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\right)\)

\(\Rightarrow F=2.\left(\frac{1}{5}-\frac{1}{20}\right)\)

\(\Rightarrow F=2.\frac{3}{20}\)

\(\Rightarrow F=\frac{3}{10}\)

24 tháng 4 2018

\(F=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)

\(\Rightarrow\)\(\frac{1}{2}F=\frac{1}{2}.\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\right)\)

\(\Rightarrow\) \(\frac{1}{2}F=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{380}\)

\(\Rightarrow\)  \(\frac{1}{2}F=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{19.20}\)

\(\Rightarrow\) \(\frac{1}{2}F=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow\)  \(\frac{1}{2}F=\frac{1}{5}-\frac{1}{20}\)

\(\Rightarrow\) \(\frac{1}{2}F=\frac{4}{20}-\frac{1}{20}\)

\(\Rightarrow\) \(\frac{1}{2}F=\frac{3}{20}\)

\(\Rightarrow\)\(F=\frac{3}{20}\div\frac{1}{2}\)

\(\Rightarrow\) \(F=\frac{3}{20}.2\)

\(\Rightarrow\)\(F=\frac{3}{10}\)

24 tháng 4 2018

\(F=\frac{1}{15}+\frac{ 1}{21}+...+\frac{1}{190}\)

\(F=\frac{2}{30}+\frac{2}{21}+...+\frac{2}{380}\)

\(F=\frac{2}{5.6}+...+\frac{2}{19.20}\)

\(F=2.\left(\frac{1}{5.6}+...+\frac{1}{19.20}\right)\)

\(F=2.\left(\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}\right)\)

\(F=2\left[\frac{1}{5}-\left(\frac{1}{6}-\frac{1}{6}\right)-...-\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{20}\right]\)

\(F=2.\left(\frac{1}{5}-\frac{1}{20}\right)\)

\(F=2.\frac{3}{20}\)

\(F=\frac{6}{20}=\frac{3}{10}\)

\(G=\frac{12}{84}+\frac{12}{210}+...+\frac{12}{2100}\)

\(G=\frac{4}{28}+\frac{4}{70}+...+\frac{4}{700}\)

\(G=\frac{4}{4.7}+\frac{4}{7.10}+...+\frac{4}{25.28}\)

\(G=\frac{4}{3}.\left(\frac{3}{4.7}+...+\frac{3}{25.28}\right)\)

\(G=\frac{4}{3}.\left(\frac{1}{4}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(G=\frac{4}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(G=\frac{4}{3}.\frac{6}{28}\)

\(G=\frac{2}{7}\)

Tổng của G và F là : \(\frac{3}{10}+\frac{2}{7}=\frac{21}{70}+\frac{20}{70}=\frac{41}{70}\)

2 tháng 4 2017

21)

\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)

\(A=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)

\(A=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{380}\) ( nhân cả tử và mẫu với 2 )

\(A=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{19.20}=2\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{19.20}\right)\)

A = \(2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{20}\right)=2\left(\frac{1}{5}-\frac{1}{20}\right)=2.\frac{3}{20}=\frac{3}{10}\)

B = \(\frac{12}{84}+\frac{12}{210}+\frac{12}{390}+...+\frac{12}{2100}\)

\(B=\frac{4}{28}+\frac{4}{70}+\frac{4}{130}+...+\frac{4}{700}\) ( chia cả tử và mẫu của mỗi phân số cho 3 )

B = \(\frac{4}{4.7}+\frac{4}{7.10}+\frac{4}{10.13}+...+\frac{4}{25.28}=\frac{4}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)

B = \(\frac{4}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)=\frac{4}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{4}{3}.\frac{6}{28}=\frac{2}{3}\)

15 tháng 6 2019

B = \(\frac{12}{84}+\frac{12}{210}+\frac{12}{390}+...+\frac{12}{2100}\)

Mik sửa lại đề bài