Tính :
a) \(\left(\frac{1}{2}x^3y^3+2x^2+y^4\right)\div xy^2\)
b) \(\left(2x^4y-6x^2y^7+4x^5\right):2x^2\)
c) \(\left(2x^2z^5-y^3z^3+4z^6\right)\div z^3\)
d) \(\left[2\left(x-2y\right)^4-9\left(x-2y\right)^3+2\left(x-2y\right)\right]\div\left(x-2y\right)\)
Áp dụng công thức \(\left(A+B+C\right):D=A:D+B:D+C:D\)
\(a,=\frac{1}{2}x^3y^3:xy^2+2x^2:xy^2+y^4:xy^2=\frac{x^2y}{2}+\frac{2x}{y^2}+\frac{y^2}{x}\)
\(b,=2x^4y:2x^2-6x^2y^7:2x^2+4x^5:2x^2=x^2y-3y^7+2x^3\)
\(c,=2x^2z^5:z^3-y^3z^3:z^3+4z^6:z^3=2x^2z^2-y^3+4z^3\)
\(d,=2\left(x-2y\right)^4:\left(x-2y\right)-9\left(x-2y\right)^3:\left(x-2y\right)+2\left(x-2y\right):\left(x-2y\right)=2\left(x-2y\right)^3-9\left(x-2y\right)^2+2\)