Tìm a và b€N thỏa mãn 11/17<a/b<23/29 và 8b -9a=31
giải cách THCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên a,b thỏa mãn điều kiện:
\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và 8b-9a=31
Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)
Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)
\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)
Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)
Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)
\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)
(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)
Với \(a=17\Rightarrow b=23\)
Với \(a=25\Rightarrow b=32\)
mình đã thi học kì bài này và mình được 10, nhưng đã 1 năm trôi qua nên mình quên mất tiêu rùi.
rất tiếc, chúc bạn may mắn