K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

ta có

P(x)= x2014 + 2013x + 2012

     =  (x2014 + x ) + (2012x+2012)

     = x ( x 2013 +1 ) + 2012(x+1)

      = x(x+1)(x2012 - x2011 + x2010 - x2009 + x2008 - .....- x + 1 ) + 2012(x+1)

     =(x+1)(x2013 - x2012 + x2011 - x2010 + x2009 - ..........x2 + x + 2012)

    = (x+1)( \(\frac{\left(x^{2014}+x\right)}{x+1}\) )

vậy để P(x) có nghiệm thì

(x+1) (\(\frac{\left(x^{2014}+x\right)}{x+1}\)) = 0

=> x+1 = 0

giải ra ta được x+1 = 0 => x=-1 

                    

30 tháng 5 2021

=4 nhó

30 tháng 5 2021

UMMMMM , LÀ P/S HAY PHÉP TÍNH THƯỜNG

4 tháng 4 2017

\(P\left(x\right)=x^5-2013x^4+2013x^3-2013x^2+2013x-2014\)

\(=x^5-2012x^4-x^4+2012x^3+x^3-2012x^2-x^2+2012x+x-2014\)

\(=\left(x^5-x^4\right)+\left(-2012x^4+2012x^3\right)+\left(x^3-x^2\right)+\left(-2012x^2+2012x\right)+x-2014\)

\(=x^4\left(x-1\right)-2012x^3\left(x-1\right)+x^2\left(x-1\right)-2012x\left(x-1\right)+\left(x-1\right)-2013\)

\(=\left(x-1\right)\left(x^4-2012x^3+x^2-2012x+1\right)-2013\)

\(=\left(x-1\right)\left(x^3\left(x-2012\right)+x\left(x-2012\right)+1\right)-2013\)

Thay x=2012 ta có :

\(P\left(x\right)=\left(2012-1\right)\left(2012^3\left(20112-2012\right)+2012\left(2012-2012\right)+1\right)-2013\)

\(=2011\left(2012^3\cdot0+2012\cdot0+1\right)-2013\)

\(=2011\cdot\left(1\right)-2013\\ =-2\)

4 tháng 4 2017

\(P\left(x\right)=x^5-\left(2012+1\right)x^4+\left(2012+1\right)x^3-\left(2012+1\right)x^2+\left(2012+1\right)x-\left(2012+2\right)\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+2\right)\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)

\(\Rightarrow P\left(x\right)=-2\)

31 tháng 12 2020

Từ đề bài ta suy ra \(P\left(x\right)=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)+2013\).

Do đó \(P\left(x\right)-2014=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)-1\).

Giả sử đa thức \(P\left(x\right)-2014\) có một nghiệm nguyên x = a. Khi đó ta có: \(\left(a-2012\right)\left(a-2013\right)\left(a-2014\right).f\left(a\right)-1=0\).

Điều trên vô lí vì vế trái chia cho 3 dư 2, trong khi đó vế phải chia hết cho 3.

Vậy ta có đpcm. 

30 tháng 5 2020

f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1 

= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1 

= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1 

= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1

= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1

= x - 1 = 2012 - 1 = 2011

10 tháng 4 2016

Gọi đa thức dư là ax+b và thương là h(x)

có f(x)=g(x).h(x)+ax+b

thay=1 x=-1 lần lượt ta đc(vì 1-x^2có x=1 x=-1)

a+b=5 và -a+b=1

suy ra a=2 b=3

vậy dư là 2x+3