Chung minh rang
S=1/5^2+1/6^2+1/7^2+....+1/100^2 nho hon 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\left(\frac{1}{1^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^2}-\frac{1}{4^2}\right)+...+\left(\frac{1}{9^2}-\frac{1}{10^2}\right)\)
\(=\frac{1}{1}-\frac{1}{10^2}\)
\(=1-\frac{1}{100}
=3/1.4+5/4.9+7/9.16+......+19/81.100
=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)
=1-1/100
=99/100<1(đpcm)
vì các phân số có mẫu lớn hơn tử thì bé hơn 1 nên chúng bé hơn 2
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy
Với mọi k, n Є N+, n ≥ 2 có 1 / (k + 1) + 1 / (k + 2) + ... + 1 / (k + n) < n / (k + 1)
=>
1 = 1
1 / 2 + 1 / 3 < 2 / 2 = 1
1 / 4 + 1 / 5 + 1 / 6 + 1 / 7 < 4 / 4 = 1
1 / 8 + ... + 15 < 8 / 8 = 1
1 / 16 + ... + 1 / 31 < 16 / 16 = 1
1 / 32 + ... + 1 / 63 < 32 / 32 = 1
Cộng vế theo vế có 1 + 1 / 2 + ... + 1 / 63 < 6
1+1/2+1/3+1/4+...+1/63=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+...+1/15)+(1/16+1/17+..,+1/31)+(1/32+1/33+...+1/63)
<1+(1/2+1/2)+(1/4+1/4+1/4+1/4)+(1/8+1/8+...+1/8)+(1/16+1/16+...+1/16)+(1/32+1/32+...+1/32)
<1+1+1+1+1+1=6
Ta có:
\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6^2}<\frac{1}{5.6}\)
\(...\)
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}<\frac{1}{2}\)
Vậy \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{2}\)
\(s=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
\(S=\frac{1}{5.5}+\frac{1}{6.6}+\frac{1}{7.7}+...+\frac{1}{100.100}<\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(S<\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow S<\frac{1}{5}-\frac{1}{101}\)
Vì \(\frac{1}{5}<\frac{1}{2}\)nên \(\frac{1}{5}-\frac{1}{101}<\frac{1}{2}\)
hay \(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{5}-\frac{1}{101}<\frac{1}{2}\)
Vậy \(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{2}\) (đpcm)