Chứng minh rằng:
Nếu -1≤b≤1 thì BĐT có chiều ngược lại: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\le\dfrac{2}{1+ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)(1)
Tiếp tục chứng minh ta được: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1\ge c\\ab\ge0\end{matrix}\right.\)(2)
Cộng theo vế pt(1) với pt(2) ta được:
\(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(ab+1\right)\ge a+b+c\)
Nên: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\)
Chứng minh tương tự suy ra đpcm
Câu hỏi của Phạm Quốc Anh - Toán lớp 7 - Học toán với OnlineMath
a) Xét hiệu : VT - VP
= \(\dfrac{\left(a+b\right)^2}{4}\) _ ab = \(\dfrac{a^2+2ab+b^2}{4}\)- \(\dfrac{4ab}{4}\)
= \(\dfrac{a^2-2ab+b^2}{4}\) = \(\dfrac{\left(a-b\right)^2}{4}\)
Có : (a - b )2 \(\ge\) 0 => \(\dfrac{\left(a-b\right)^2}{4}\) \(\ge\) 0 .
(bất phương trình đúng ) .
=> VT - VP \(\ge\) 0 => ( \(\dfrac{a+b}{2}\))2 \(\ge\) ab .
b) Xét hiệu ; VP - VT
= \(\dfrac{a^2+b^2}{2}\)-(\(\dfrac{a+b}{2}\))2
= \(\dfrac{2a^2+2b^2-\left(a^2+2ab+b^2\right)}{4}\)
= \(\dfrac{\left(a-b\right)^2}{4}\) .
Có : (a-b)2 \(\ge\) 0 => \(\dfrac{\left(a-b\right)^2}{4}\) \(\ge\) 0 .
VP - VT \(\ge\) 0 .
Vậy ( \(\dfrac{a+b}{2}\) )2 \(\le\) \(\dfrac{a^2+b^2}{2}\) .
Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)
\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)
\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)
\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)
Xảy ra khi \(a=b=c\)
\(BĐT\Leftrightarrow\sum\left(\dfrac{1}{a}-\dfrac{b+c}{a^2+bc}\right)\ge0\)
\(\Leftrightarrow\sum\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\)
Giả sử \(a\ge b\ge c\)thì
\(\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\).vậy nên chỉ cần chứng minh
\(\dfrac{\left(b-c\right)\left(b-a\right)}{b\left(b^2+ac\right)}+\dfrac{\left(c-a\right)\left(c-b\right)}{c\left(c^2+ab\right)}\ge0\)
\(\Leftrightarrow\left(b-c\right)\left[\dfrac{b-a}{b\left(b^2+ac\right)}+\dfrac{a-c}{c\left(c^2+ab\right)}\right]\ge0\)
\(\Leftrightarrow\left(b-c\right)\left[\left(b-a\right)\left(c^3+abc\right)+\left(a-c\right)\left(b^3+abc\right)\right]\ge0\)
\(\Leftrightarrow\left(b-c\right)^2\left(b+c\right)\left(ab+ac-bc\right)\ge0\)( đúng vì \(a\ge b\ge c\))
Vậy BĐT được chứng minh.
Dấu = xảy ra khi a=b=c
Chuyển vế sang, xét \(\left(\dfrac{1}{1+ab}-\dfrac{1}{a^2+1}\right)+\left(\dfrac{1}{1+ab}-\dfrac{1}{b^2+1}\right)=\dfrac{a^2-ab}{\left(1+ab\right)\left(a^2+1\right)}+\dfrac{b^2-ab}{\left(1+ab\right)\left(b^2+1\right)}\)
\(=\dfrac{a-b}{1+ab}.\left(\dfrac{a}{a^2+1}-\dfrac{b}{b^2+1}\right)=\dfrac{\left(a-b\right)^2\left(1-ab\right)}{\left(1+ab\right)\left(a^2+1\right)\left(b^2+1\right)}\)
Dễ thấy (a - b)2 không âm, (a2 + 1) > 0, (b2 + 1) > 0
nên bđt trên phụ thuộc vào dấu của \(\dfrac{1-ab}{1+ab}\)
Đề bài sai, chiều của BĐT này ko phụ thuộc vào b mà phụ thuộc vào ab
Ví dụ: với \(b=\dfrac{1}{2};a=6\) (b thỏa mãn \(-1\le b\le1\)) thì \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}>\dfrac{2}{1+ab}\)
Nhưng với \(b=\dfrac{1}{2};a=1\) (vẫn thỏa mãn \(-1\le b\le1\) ) thì \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}< \dfrac{2}{1+ab}\)