Cho tổng S=1+\(3^1\)+...+3\(^{30}\)
Hỏi S có là số chính phương hay khổng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+3+32+33+.................+330
S=1+3+32.1+32.3+...............+32.328
S=1+3+32(1+3+........+328)
S=4+32(1+3+........+328)
vì 32(1+3+........+328) chia hết cho 9 =32 mà 4 không chia hết cho 9 nên S không là số chính phương
ta thấy3^2+3^3+...+3^30 chia het cho 3^2
mã 1+3 ko chia hết cho 3^2
S= 1+3+3^2+3^3+...+3^30 ko la so CP
3S=3(1+3+3^2+3^3+..+3^2022)
3S=3+3^2+3^3+3^4+...+3^2023
mà S=1+3+3^+3^3+...+3^2022
3S-S=3^2023-1
2S=3^2023-1
S=3^2023-1/2
Không vì S = \(\frac{3^{30}-1}{2}\) không phải bình phương của 1 số
Ta có công thức :
\(n^0+n^1+n^2+...+n^x=\frac{n^{x+1}-1}{n-1}\)
\(\Rightarrow3^0+3^1+3^2+....+3^{30}=\frac{3^{31}-1}{3-1}=308836698141963\)
b) Vậy chữ số tận cùng của \(S\)là 3.
c) Ta có thể nhận thấy số chính phương bằng chữ số tận cùng.
Ta có: 12 = 1 ( chữ số tận cùng )
22 = 4 ( ........................ )
32 = 9 ( ........................ )
42 = 6 (.........................)
52 = 5 (.........................)
62 = 6 ; 72 = 9; 82 = 64; 92 = 81
=> Không có số tự nhiên nào lũy thừa lên có chữ số tận cùng là 3. Vây S không phải là số chính phương.
Ta có: S = 1 + 31 + 32 + 33 +...+ 330
=> 3S = 3 + 32 + 33 + 34 + ...+ 331
=> 3S - S = (3 + 32 + 33 + 34 + ...+ 331) - (1 + 31 + 32 + 33 +...+ 330)
=> 2S = 331 - 1
Lại có: 3311 = (34)7 . 33 = (...1)7 . 27 = (...1) .27 = (...7) . 27 = (...7) => 2S có c/s tân cùng là; 7 - 1 = 6
=> 3S có chữ số tận cùng là 3 hoặc 8 mà chính phương ko có chữ số tận cùng là 3 hoặc 8
=> 3S ko phải chính phương
Câu a mình không biết =>