K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1

╰‿╯p̫h̫úc̫❤️h̫i̫ền̫亗

12 tháng 1

╰‿╯p̫h̫úc̫♂❤️h̫i̫ền̫♀亗

7 tháng 4 2021

tui nek                                                                          

= 2

hok tốt

13 tháng 5 2019

Cùng tên :vvv

13 tháng 2 2020

đù xúc phạm dữ

4 tháng 1 2018

Ta có BĐT cần chứng minh <=>\(\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\Leftrightarrow x^{2018}+y^{2018}+xy^{2017}+x^{2017}y\le2\left(x^{2018}+y^{2018}\right)\)

<=>\(xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

<=>\(\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

vì vai trò của x,y như nhau , giả sử \(x\ge y\Rightarrow x^{2017}\ge y^{2017}\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

=> BĐT cần chứng minh luôn đúng 

=> ĐPCM 

dâu = xảy ra <=> x=y=1

^_^