27^100+27^96+...+27^4+1/ 27^102+27^100+...+27^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, <=> (x-5/100) -1 +(x-4/101) -1 +(x-3/102) -1= (x-100/5) -1+(x-101/4) -1 +(x-102/3) -1
<=> (x-105)(1/100 +1/101 +1/102)= (x-105)(1/5+1/4+1/3)
<=> (x-105)(1/100+1/101+1/102-1/5-1/4-1/3)=0
vì 1/100+1/101+1/102-1/5-1/4-1/3 khác 0 <=> x-105=0
<=> x=105
b, 29-x/21 +1+27-x/23 +1+25-x/25 +1+23-x/27 +1+21-x/29 +1=0
<=> 50-x/21 +50-x/23 +50-x/25 +50-x/27 +50-x/29=0
<=> (50-x)(1/21 +1/23 +1/25 +1/27 +1/29)=0
vì 1/21+1/23+1/25+1/27+1/29 lớn hơn 0
nên 50-x=0
<=> x=50
\(\frac{27}{36}< \frac{75}{100}\)là sai
\(\frac{27}{36}>\frac{75}{100}\)là sai
\(\frac{27}{36}=\frac{75}{100}\)là đúng
-27(87-100) - 87(100-27)= -27. 87 + 27. 100 - 87.100 + 87.27
=100(27-87) + 87.27 - 87. 27
=100. -60 = -6000
b: \(\Leftrightarrow\left(\dfrac{29-x}{21}+1\right)+\left(\dfrac{27-x}{23}+1\right)+\left(\dfrac{25-x}{25}+1\right)+\left(\dfrac{23-x}{27}+1\right)+\left(\dfrac{21-x}{29}+1\right)=0\)
=>50-x=0
hay x=50
c: \(\Leftrightarrow\dfrac{x-2}{2001}+1=\dfrac{x-1}{2002}+\dfrac{x}{2003}\)
\(\Leftrightarrow\left(\dfrac{x-2}{2001}-1\right)=\left(\dfrac{x-1}{2002}-1\right)+\left(\dfrac{x}{2003}-1\right)\)
=>x-2003=0
hay x=2003
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)
a. \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Rightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Rightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Rightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Rightarrow x-105=0\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Rightarrow x=105\)
b. \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Rightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1+\frac{21-x}{29}+1=0\)
\(\Rightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Rightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Rightarrow50-x=0\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
\(\Rightarrow x=50\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Dễ dàng thấy nhân tử thứ hai luôn bé thua 0 nên \(x-105=0\)\(\Leftrightarrow x=105\)
b) Kĩ thuật làm tương tự câu a cộng mỗi phân số VT với 1 thì VP=0 và ta có nhân tử chung 50-x