Cho a>0, b>0, c>0. chứng minh bất đẳng thức:
ab/c+ bc/a + ac/b > a + b + c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a > b và c > 0 thì ac > bc
Nếu a > b và c > 0 thì a + c > b + c
Nếu a > b và c < 0 thì a + c > b + c
Nếu a > b và c < 0 thì ac < bc
Nểu a < b và c > 0 thì ac < bc
Nếu a < b và c > 0 thì a + c < b + c
Nếu a < b và c < 0 thì ac > bc
Nếu a < b và c < 0 thì a + c < b + c
a/bc + b/ac >= 2.căn(1/c^2) = 2/c
tương tự:
a/bc + c/ab >= 2/b
b/ac + c/ab >= 2/a
cộng vế theo vế ;
ta đc
a/bc +b/ac+ c/ab >= 1/a +1/b +1/c
2)
a / (b+c) + 1 = (a+b+c)/(b+c)
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 = (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
áp dụng bđt cauchy quen thuộc
(x+y+z)(1/x + 1/y + 1/z) >= 9
=> 2(a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
= (a+b + b+c + c+a)(1/(b+c) + 1/(a+c) + 1/(a+b)) >=9
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) >= 9/2
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) >=3/2
Chắc làm vậy
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
Cho a,b,c> 0 chứng minh bất đẳng thức
(c+\(\frac{a}{bc}\))(a+\(\frac{b}{ac}\))(b+\(\frac{c}{ab}\))>=8
do a,b,c > áp dụng BĐT Cosi ta có
c+a/bc>=2<c.a/bc>=2<a/b>(bạn hiểu <> là căn bậc 2 nhan )
a+b/ac>=2<b/c>
b+c/ab>=2<c/a>
suy ra (c+a/bc)(a+b/ac)(b+c/ab)>=2<a/b>.2<b/c>.2<c/a>=8<abc/abc>=8(đpcm)
Chỉ cần chú ý:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)
Từ đó thiết lập 2 BĐT còn lại tương tự rồi cộng theo vế thu được đpcm.
Áp dụng BĐT Bunhiacopxky :
\(\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\left(abc+abc+abc\right)\ge\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\frac{\left(ab+bc+ac\right)^2}{3abc}\left(1\right)\)
Áp dụng BĐT Cauchy
\(\hept{\begin{cases}a^2b^2+b^2c^2\ge2ab^2c\\a^2b^2+c^2a^2\ge2a^2bc\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\\b^2c^2+c^2a^2\ge2abc^2\end{cases}}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge3\left(a+b+c\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!
Nếu a>0 và b>0 thì a+c>b+c
Nếu a<0 và b<0 thì a+c<b+c
Nếu a>b và c>0 thì ac>bc
Nếu a>c và c<0 thì ac<bc
Từ \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)và \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\\abc\ge0\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Rightarrow a+b+c-\left(ab+bc+ca\right)+abc\le1\)
\(\Rightarrow a+b^2+c^3-\left(ab+bc+ca\right)\le1\)
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
ôi dào !dễ ợt ! cô em mới cho học ngày hôm qua !k đi rùi em trình bày cho cách làm !