Chứng minh dấu hiệu nhận biết: Hình thang có 2 đường chéo bằng nhau là hình thang cân. (c/m hai góc ở đáy bằng nhau).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.
Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên A H = C H = E H = A B + C D 2
Giả sử hình thang là ABCD,
Qua B kẻ đường thẳng với AC cắt DC tại E
a)Ta có ACD=BAC (AB//CD)
mà ACD =BEC =>BEC=BAC
Xét tam giac ABC va tam giác ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
mà BEC=ACD(đồng vị)=>ACD=BDC
xét tam giac ACD va tam giac BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tam giac ACD=tam giác BDC
=>ADC=BCD
=>ABCD la hình thang cân (dfcm)
Từ B kẻ đường thẳng song song với AC cắt đường thẳng DC tại K.
Ta có hình thang ABKC có hai cạnh bên BK // AC nên AC = BK
Mà AC = BD (gt)
Suy ra: BD = BK do đó ∆ BDK cân tại B
⇒ ∠ D 1 = ∠ K (tính chất hai tam giác cân)
Ta lại có: ∠ C 1 = ∠ K (hai góc đồng vị)
Suy ra: ∠ D 1 = ∠ C 1
Xét ∆ ACD và ∆ BDC:
AC = BD (gt)
∠ C 1 = ∠ D 1 (chứng minh trên)
CD chung
Do đó ∆ ACD = ∆ BDC (c.g.c) ⇒ ∠ (ADC) = ∠ (BCD)
Hình thang ABCD có ∠ (ADC) = ∠ (BCD) nên là hình thang cân.
Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E.
Ta có:
Góc ACD = góc BED (tính chất góc hình bình hành)
mà gócBDE = gócBED ( BDE là tam giac cân tại B)
=> góc ACD= góc BDC
xét 2 tam giác ACD và tam giác BDC có:
+ AC = BD ( gt)
+ góc ACD = góc BDC
+có cùng cạnh CD
=> tam giác ACD = tam giác BDC ( cạnh,góc,cạnh)
xét hình thang ABCD:
AD = BC vì tam giác ACD = tam giác BDC
=> ABCD là hình thang cân.
Vậy hình thang có hai đường chéo bằng nhau là hình thang cân.(đpcm)