K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2023

Lấy EAD�∈�� sao cho AE=AB��=�� mà AD=AB+AC��=��+�� nên AC=DE.��=��.

ΔABEΔ��� cân có ˆBAD=60���^=60∘ nên ΔABEΔ��� là tam giác đều suy ra AE=EB.��=��.

Thấy ˆBED=ˆEBA+ˆEAB=120���^=���^+���^=120∘  (góc ngoài tại đỉnh E của tam giác ABE��� )  nên ˆBED=ˆBAC(=120)���^=���^(=120∘)

Suy ra ΔEBD=ΔABC(c.g.c)ˆB1=ˆB2Δ���=ΔA��(�.�.�)⇒�1^=�2^ (hai góc tương ứng bằng nhau) và BD=BC��=�� (hai cạnh tương ứng)

Lại có ˆB1+ˆB3=60�1^+�3^=60∘ nên ˆB2+ˆB3=60.�2^+�3^=60∘.

ΔBCDΔ��� cân tại B có ˆCBD=60���^=60∘ nên nó là tam giác đều.

Đây nhé!

1 tháng 2 2023

lười làm lắm

3 tháng 5 2018

A B C D E 1 2 1

Qua D kẻ DE // AB ( E \(\in\)AB )

Vì AD là phân giác góc A của \(\Delta ABC\):

\(\Rightarrow\)\(\frac{DC}{DB}=\frac{AC}{AB}\)

\(\Rightarrow\) \(\frac{DC}{DB+DC}=\frac{AC}{AB+AC}\)hay \(\frac{DC}{BC}=\frac{6}{3+6}\)\(\Leftrightarrow\)\(\frac{DC}{BC}=\frac{2}{3}\)(1)

Ta có : AB là phân giác góc A \(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=\frac{120}{2}=60^0\)

Mà \(\widehat{A_1}=\widehat{D_1}=60^0\)( so le trong , DE // AB )

\(\Rightarrow\widehat{A_2}=\widehat{D_1}=60^0\Rightarrow\)\(\Delta ADE\)đều

\(\Rightarrow\)AD = DE 

Vì DE // AB ( cách dựng )

Xét \(\Delta ABC\)theo hệ quả định lý Ta-lét ta có:\(\frac{DE}{AB}=\frac{DC}{BC}\)(2)

Thế (1) vào (2) ta được :\(\frac{DE}{AB}=\frac{2}{3}\)hay \(\frac{DE}{3}=\frac{2}{3}\)

\(\Rightarrow DE=\frac{2.3}{3}=2\left(cm\right)\)

\(\Rightarrow AD=2\left(cm\right)\)( AD=DE chứng minh trên )