So sánh \(A=\frac{2012^{37}+37^{2012}+1}{2012^{38}}\) với \(B=\frac{2012^{38}+37^{2012}+2}{2012^{39}}\)
giúp mình nha các bạn !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :M=\(\frac{2012^{37}+37^{2012}+1}{2012^{38}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2018^{38}}\)+\(\frac{1}{2012^{38}}\)
N=\(\frac{2012^{38}+37^{2012}+2}{2012^{39}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2012^{39}}\)+\(\frac{2}{2012^{39}}\)
Suy ra: M-N=\(\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)\)+\(\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)
\(\Rightarrow\)M-N=\(\frac{37^{2012}}{2012^{38}}.\frac{2011}{2012}+\frac{1}{2012^{38}}.\frac{2010}{2012}\)
\(\Rightarrow\)M-N>0
\(\Rightarrow\)M>N
Vậy M>N
\(A=\frac{1}{2012}+\frac{37^{2012}}{2012^{38}}+\frac{1}{2012^{38}}\)
\(B=\frac{1}{2012}+\frac{37^{2012}}{2012^{39}}+\frac{2}{2012^{39}}\)
Ta có:
\(A-B=\frac{37^{2012}}{2012^{38}}-\frac{37^{2012}}{2012^{39}}+\frac{1}{2012^{38}}-\frac{2}{2012^{39}}\)
\(A-B=\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)+\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)
\(A-B=\frac{37^{2012}}{2012^{38}}\left(\frac{2011}{2012}\right)+\frac{1}{2012^{38}}\left(\frac{2010}{2012}\right)\)
A - B > 0
=> A > B
A=201237/201238+ 372012/201238+1/201238
= 1/2012+ 372012/201238+ 1/201238
Tương tự ta có:
B=1/2012+ 372012/201239+1/201239+1/201239
Ta thấy: 1/2012=1/2012( ở 2 vế)
372012/201238 > 372012/ 201239( do cùng tử, mẫu nào nhỏ hơn thì phân số đó lớn hơn)
tương tự: 1/201238> 1/201239( 201238< 201239)
201239 là một số rất lớn nên 1/201239 rất bé và gần đến 0.
Vậy A>B.
Đặt \(A=\frac{37^{2013}+1}{37^{2012}+1}\) và \(B=\frac{37^{2014}+1}{37^{2013}+1}\) ta có :
\(\frac{1}{37}A=\frac{37^{2013}+1}{37^{2013}+37}=\frac{37^{2013}+37-36}{37^{2013}+37}=\frac{37^{2013}+37}{37^{2013}+37}-\frac{36}{37^{2013}+37}=1-\frac{36}{37^{2013}+37}\)
\(\frac{1}{37}B=\frac{37^{2014}+1}{37^{2014}+37}=\frac{37^{2014}+37-36}{37^{2014}+37}=\frac{37^{2014}+37}{37^{2014}+37}-\frac{36}{37^{2014}+37}=1-\frac{36}{37^{2014}+37}\)
Vì \(\frac{36}{37^{2013}+37}>\frac{36}{37^{2014}+37}\) nên \(1-\frac{36}{37^{2013}+37}< 1-\frac{36}{37^{2014}+37}\)
\(\Rightarrow\)\(\frac{1}{37}A< \frac{1}{38}B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
A = \(\frac{2011+2012}{2012+2013}=\frac{2011+2012}{4025}\)
Ta có:
\(\frac{2011}{2012}>\frac{2011}{4025}\)
\(\frac{2012}{2013}>\frac{2012}{4025}\)
=> \(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{4025}+\frac{2012}{4025}\)
=> \(B>\frac{2011+2012}{4025}\)
=>\(B>A\)
Cách 1
\(A=\frac{2011+2012}{2012+2013}\)
\(A=\frac{2011+1}{1+2013}\)
\(A=\frac{2012}{2014}\)
\(B=\frac{2011}{2012}+\frac{2012}{2013}\)
\(B=\frac{2011+2012}{2012+2013}\)
\(B=\frac{2011+1}{1+2013}\)
\(B=\frac{2012}{2014}\)
Vậy A và B bằng nhau vì cùng bằng \(\frac{2012}{2014}\)
Cách 2
A và B bằng nhau vì đều có hai phân số 2011/2012 + 2012/2013
Đặt a=1000^2012 thì \(A=\frac{a+2}{a-1}\) ; \(B=\frac{a}{a-3}\)
Xét \(A-B=\frac{a+2}{a-1}-\frac{a}{a-3}=\frac{\left(a+2\right)\left(a-3\right)-a\left(a-1\right)}{\left(a-1\right)\left(a-3\right)}\)
\(=\frac{a^2-a-6-a^2+a}{\left(a-1\right)\left(a-3\right)}=\frac{-6}{\left(a-1\right)\left(a-3\right)}\)
Do \(a>1;a>3\) nên \(\left(a-1\right)\left(a-3\right)>0\Leftrightarrow A-B< 0\)
Do đó \(A>B\)