Tìm các cặp số tự nhiên (a, b), a < b, sao cho: 1/a + 1/b =1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b \(\in\) N nên (a; b) \(\in\) {(1; 1); (1;2); (2;1); (2;3); (3;2)}
Vì a , b thuộc N nên ( a ; b ) thuộc { ( 1 ; 1 ) ; ( 1 ; 2 ) ; ( 2 ; 1 ) ; ( 2 ; 3 ) ; ( 3 ; 2 ) }
A)(0;0)(1;1)
B)Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a)xy=x+y
=>xy-x-y=0
=>x(y-1)-(y-1)-1=0
=>x(y-1)-(y-1)=1
=>(y-1)(x-1)=1
=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0
b)Câu này khó quá nhưng ủng hộ nha
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\left(a,b\ne-1\right)\\ \Rightarrow2\left(a+b+2\right)=\left(a+1\right)\left(b+1\right)\\ \Rightarrow2a+2b+4=ab+a+b+1\\ \Rightarrow a+b-ab+3=0\\ \Rightarrow\left(b-1\right)-a\left(b-1\right)=-4\\ \Rightarrow\left(a-1\right)\left(b-1\right)=4=1\cdot4=2\cdot2\)
\(a-1\) | 1 | 4 | 2 |
\(b-1\) | 4 | 1 | 2 |
\(a\) | 2 | 5 | 3 |
\(b\) | 5 | 2 | 3 |
Vậy \(\left(a;b\right)=\left(2;5\right);\left(5;2\right);\left(3;3\right)\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\Leftrightarrow\dfrac{2\left(a+1\right)+2\left(b+1\right)-\left(a+1\right)\left(b+1\right)}{2\left(a+b\right)\left(b+1\right)}=0\)
\(\Leftrightarrow a+b-ab+3=0\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=-4\Leftrightarrow\left(a-1\right)\left(1-b\right)=-4\)
Do \(a,b\in N\) nên ta có bảng sau:
a-1 | -1 | 1 | -4 | 4 | -2 | 2 |
1-b | 4 | -4 | 1 | -1 | 2 | -2 |
a | 0 | 2 | -3(loại) | 5 | -1(loại) | 3 |
b | -3(loại) | 5 | 0 | 2 | -1(loại) | 3 |
Vậy \(\left(a;b\right)\in\left\{\left(2;5\right);\left(5;2\right);\left(3;3\right)\right\}\)
\(\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a>2\\b>2\end{cases}}\)
\(\frac{1}{2}=\frac{1}{a}+\frac{1}{b}< \frac{1}{a}+\frac{1}{a}=\frac{2}{a}\Leftrightarrow a< 4\)
Với \(a=3\Rightarrow\frac{1}{b}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
suy ra \(b=6\)(thỏa mãn)