A = 1 + \(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{299}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
a)
Ta thấy:
\(\dfrac{1}{6}< \dfrac{1}{5}\)
\(\dfrac{1}{7}< \dfrac{1}{5}\)
\(\dfrac{1}{8}< \dfrac{1}{5}\)
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\dfrac{1}{11}< \dfrac{1}{10}\)
\(\dfrac{1}{12}< \dfrac{1}{10}\)
\(\dfrac{1}{13}< \dfrac{1}{10}\)
...
\(\dfrac{1}{17}< \dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 5\cdot\dfrac{1}{5}+8\cdot\dfrac{1}{10}=1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)
Vậy \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
b)
Ta thấy:
\(\dfrac{1}{101}>\dfrac{1}{300}\)
\(\dfrac{1}{102}>\dfrac{1}{300}\)
\(\dfrac{1}{103}>\dfrac{1}{300}\)
...
\(\dfrac{1}{299}>\dfrac{1}{300}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>200\cdot\dfrac{1}{300}=\dfrac{2}{3}\)
Vậy \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>\dfrac{2}{3}\)
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)
\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)
\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)
\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)
Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)
...
\(\dfrac{1}{299}>\dfrac{1}{300}\)
Do đó :
\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)
Vậy...
a) \(0,25-\dfrac{2}{3}+1\dfrac{1}{4}\)
\(=\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{5}{4}\)
\(=\dfrac{3}{12}-\dfrac{8}{12}+\dfrac{15}{12}\)
\(=\dfrac{10}{12}\)
\(=\dfrac{5}{6}\)
\(---\)
b) \(\dfrac{3^2}{2}:\dfrac{1}{4}+\dfrac{3}{4}\cdot2010\)
\(=\dfrac{9}{2}\cdot4+\dfrac{3015}{2}\)
\(=18+\dfrac{3015}{2}\)
\(=\dfrac{36}{2}+\dfrac{3015}{2}\)
\(=\dfrac{3051}{2}\)
\(---\)
c) \(\left\{\left[\left(\dfrac{1}{25}-0,6\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-1}{3}\right)+\dfrac{1}{2}\right]\)
\(=\left\{\left[\left(-\dfrac{14}{25}\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-2}{6}\right)+\dfrac{3}{6}\right]\)
\(=\left\{\left[\dfrac{196}{625}\cdot\dfrac{125}{49}\right]\cdot\dfrac{5}{6}\right\}-\dfrac{1}{6}\)
\(=\left\{\dfrac{4}{5}\cdot\dfrac{5}{6}\right\}-\dfrac{1}{6}\)
\(=\dfrac{4}{6}-\dfrac{1}{6}\)
\(=\dfrac{3}{6}\)
\(=\dfrac{1}{2}\)
\(---\)
d) \(\left(-\dfrac{1}{2}-\dfrac{1}{3}\right)^2:\left[\left(\dfrac{-5}{36}\right)-\left(\dfrac{-5}{36}\right)^0\right]\)
\(=\left(-\dfrac{3}{6}-\dfrac{2}{6}\right)^2:\left[-\dfrac{5}{36}-1\right]\)
\(=\left(-\dfrac{5}{6}\right)^2:\left[-\dfrac{5}{36}-\dfrac{36}{36}\right]\)
\(=\dfrac{25}{36}:\left(\dfrac{-41}{36}\right)\)
\(=\dfrac{25}{36}\cdot\left(\dfrac{-36}{41}\right)\)
\(=-\dfrac{25}{41}\)
#\(Toru\)
a,a+1/4=2 3/4-1 1/2
a+1/2=5/4
a=5/4-1/2
a=3/4
b,a-7/4=13/4-7/9
a-7/4=89/36
a= 89/36+7/4
a=152/36
c,3/2-a=17/6-1/6
3/2-a=8/3
a= 3/2-8/3
a= -7/6
a) \(...\dfrac{11}{4}-a+\dfrac{1}{4}=\dfrac{3}{2}\)
\(\dfrac{11}{4}+\dfrac{1}{4}-a=\dfrac{3}{2}\)
\(3-a=\dfrac{3}{2}\)
\(a=3-\dfrac{3}{2}\)
\(a=\dfrac{6}{2}-\dfrac{3}{2}\)
\(a=\dfrac{3}{2}\)
b) \(...\dfrac{13}{4}-a-\dfrac{13}{4}=\dfrac{7}{8}\)
\(\dfrac{13}{4}-\dfrac{13}{4}-a=\dfrac{7}{8}\)
\(0-a=\dfrac{7}{8}\)
\(a=-\dfrac{7}{8}\) (ra số âm lớp 5 chưa học nên bạn xem lại đề)
c) \(...\dfrac{17}{6}-\dfrac{3}{2}-a=\dfrac{1}{6}\)
\(\dfrac{17}{6}-\dfrac{9}{6}-a=\dfrac{1}{6}\)
\(\dfrac{8}{6}-a=\dfrac{1}{6}\)
\(a=\dfrac{8}{6}-\dfrac{1}{6}\)
\(a=\dfrac{7}{6}\)
a, 2\(\dfrac{3}{4}\) - a + \(\dfrac{1}{4}\) = 1\(\dfrac{1}{2}\)
a = 2 + \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) - 1 - \(\dfrac{1}{2}\)
a = 2 + 1 - 1 - \(\dfrac{1}{2}\)
a = 2 - \(\dfrac{1}{2}\)
a = \(\dfrac{3}{2}\)
b, 3\(\dfrac{1}{4}\) - a - 3\(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)
(3\(\dfrac{1}{4}\) - 3\(\dfrac{1}{4}\)) - a = \(\dfrac{7}{8}\)
a = - \(\dfrac{7}{8}\)
c, 2\(\dfrac{5}{6}\) - 1\(\dfrac{1}{2}\) - a = \(\dfrac{1}{6}\)
a = 2 + \(\dfrac{5}{6}\) - 1 - \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)
a = (2-1) + (\(\dfrac{5}{6}\) - \(\dfrac{1}{6}\)) - \(\dfrac{1}{2}\)
a = 1 + \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)
a = \(\dfrac{7}{6}\)
b\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4
Tương tự như vậy với câu a\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2