rút gọn bt :A=m^2(m^2-n).(m^3-n^6).(m+n^2).Rất cảm ơn nào giúp mình câu này(tích phải bằng 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: x \(\ne\pm3\)
b. M = \(\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)
= \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\) = \(\frac{9+6x+x^2}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)
c. M = 0 hay \(\frac{x+3}{x-3}=0\) => x + 3 = 0 <=> x = -3 (Loại)
\(\left(m+2\right)\left(n+3\right)=7\)
\(\Rightarrow m+2,n+3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
Do \(m,n\in N\) nên không có m và n thỏa mãn
\(N=1:\left(\frac{x+2}{\sqrt{x^3}-1}+\frac{\sqrt{x}+1}{x+1+\sqrt{x}}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(N=1:\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}-\frac{\left(x+1+\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}\right)\)
\(N=1:\left(\frac{x+2+x-1-x-1-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}\right)\)
\(N=1:\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}\right)\)
\(N=1:\left(\frac{\sqrt{x}}{\left(x+1+\sqrt{x}\right)}\right)\)
\(N=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
y b
chia 2 ve cho can 2
tc
\(\sqrt{x}+1+\frac{1}{\sqrt{x}}\)
tc \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)(bdt cosi)
\(\sqrt{x}+1+\frac{1}{\sqrt{x}}\ge3\)
=> dpcm
may mk loi font chu thong cam viet ko co dau