K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

a)A=( x - 1 )+ 2008

ta thấy:(x-1)2\(\ge\)0

=>(x-1)2+2008\(\ge\)0+2008

=>A\(\ge\)2008

vậy Amin=2008 khi x=1

b)B = | x + 4 | + 1996

=>|x+4|\(\ge\)0

=>|x+4|+1996\(\ge\)0+1996

=>B\(\ge\)1996

c)để C đạt GTNN=>5 chia hết x-2

=>x-2\(\in\){1,-1,5,-5}

=>x\(\in\){3,2,-3,7}

mà C đạt GTNN =>x=-3

d)để D đạt GTNN=>x+5 chia hết x-4

<=>(x-4)+9 chia hết x-4

=>9 chia hết x-4

=>x-4\(\in\){1,-1,3,-3,-9,9}

=>x\(\in\){5,3,7,1,13,-5}

mà D đạt GTNN

=>x=1

mà D đạt GTNN =>x=-3

13 tháng 4 2016

y hệt bài ở đề cương của tui
 

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x=-4

28 tháng 3 2021

a) ta thấy (x-1)^2 >/=0

->(x-1)^2 +2008>/= 0

dấu = xảy ra khi và chỉ khi (x-1)^2= 0

<=> x=1

 vậy A có giá trị bằng 2008 khi và chỉ khi x=1

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4

13 tháng 8 2023

a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))

\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)

\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)

\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)

\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)

\(A=\dfrac{-5}{x-3}\)

b) Ta có: \(\left|x\right|=1\)

TH1: \(\left|x\right|=-x\) với \(x< 0\)

Pt trở thành:

\(-x=1\) (ĐK: \(x< 0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

Thay \(x=-1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)

TH2: \(\left|x\right|=x\) với \(x\ge0\)

Pt trở thành:

\(x=1\left(tm\right)\) (ĐK: \(x\ge0\)

Thay \(x=1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)

c) \(A=\dfrac{1}{2}\) khi:

\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10=x-3\)

\(\Leftrightarrow x=-10+3\)

\(\Leftrightarrow x=-7\left(tm\right)\)

d) \(A\) nguyên khi:

\(\dfrac{-5}{x-3}\) nguyên

\(\Rightarrow x-3\inƯ\left(-5\right)\)

\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)

a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)

\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)

\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)

\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)

b: |x|=1

=>x=-1(loại) hoặc x=1(nhận)

Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)

c: A=1/2

=>x-3=-10

=>x=-7

d: A nguyên

=>-5 chia hết cho x-3

=>x-3 thuộc {1;-1;5;-5}

=>x thuộc {4;2;8;-2}

29 tháng 4 2017

Min A=12\(\Leftrightarrow\)\(\left(x-1\right)^2=0\Leftrightarrow x=1\)

3 tháng 6 2020

A = (x-1)2 + 12 

Ta có : \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\)

Dấu = xảy ra <=> ( x - 1 )2 = 0 

                     <=> x - 1 = 0

                     <=> x = 1

Vậy MinA = 12 khi x = 1

b) B = | x + 3 | + 2020

Ta có \(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\)

Dấu = xảy ra <=> | x + 3 | = 0

                     <=> x + 3 = 0

                     <=> x = -3

Vậy MinB = 2020 khi x = -3

c) C = 5/x-2

MinC <=> 5/x-2 đạt GTNN <=> x-2 đạt GT âm lớn nhất

=> x - 2 = -1

=> x = 1

Vậy MinC = -5 khi x = 1

d) D = x+5/x-4 = \(\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

Để D đạt GTNN => 9/x-4 đạt GTNN => x - 4 đạt GT âm lớn nhất

=> x - 4 = -1

=> x = 3

Vậy MinD = -8 khi x = 3