K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ! a) Vì AH là đường cao của \(\Delta ABC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)

Xét \(\Delta ABC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago ) 

\(\Rightarrow AC^2=12^2+16^2=144+256=400=20^2\Rightarrow AC=20\left(cm\right)\)

b) Xét \(\Delta ABC\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+HB^2=AB^2\) ( ĐL Pytago ) 

\(\Rightarrow HB^2=AB^2-AH^2=13^2-12^2=169-144=25=5^2\Rightarrow HB=5\left(cm\right)\)

\(BC=HB+HC=16+5=21\left(cm\right)\)

31 tháng 3 2018

Giải bài 60 trang 133 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H ta có:

AC2 = AH2 + HC2 = 122 + 162 = 144 + 256 = 400

⇒ AC = 20 (cm)

Áp dụng định lí Pi-ta-go trong ΔAHB vuông tại H ta có:

BH2 + AH2 = AB2 ⇒ BH2 = AB2 - AH2 = 132 - 122 = 169 -144 = 25

⇒ BH = 5cm

Do đó BC = BH + HC = 5 + 16 = 21 (cm)

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

14 tháng 9 2018

Đặt BC=x \(\Rightarrow\)BH=x-16

\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25

\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)

AC=\(\sqrt{BC^2-AB^2}\)=20(cm)

AH=\(\sqrt{BH.HC}\)=12(cm

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)

hay HB=5(cm)

Ta có: HB+HC=BC(H nằm giữa B và C)

nên BC=5+16=21(cm)

Vậy: AC=20cm; BC=21cm

13 tháng 1 2022

???tìm BC mà chị sao lại HB ạ;-;

AH \(\perp\) BC ( gt )

\(\Rightarrow\) Tam giác HAC vuông tại H

\(\Rightarrow\) \(^{AC^2}\) = \(^{AH^2}\) + \(^{HC^2}\)

\(\Rightarrow\) \(^{AC^2}\)\(^{12^2}\) + \(^{16^2}\)

\(\Rightarrow\) \(^{AC^2}\)= 144 + 256

\(\Rightarrow\) \(^{AC^2}\)= 400

\(\Rightarrow\) AC = 20 ( cm )

AH \(\perp\) BC ( gt )

\(\Rightarrow\) Tam giác HAB vuông tại H

\(\Rightarrow\) \(AB^2\) = \(AH^2\) + \(BH^2\)

\(\Rightarrow\) \(BH^2\) = \(AB^2\) - \(AH^2\)

\(\Rightarrow\) \(BH^2\) = \(13^2\) - \(12^2\)

\(\Rightarrow\) \(BH^2\) = 169 - 144

\(\Rightarrow\) \(BH^2\) = 25

\(\Rightarrow\) BH = 5 ( cm )

Có: BH + HC = BC ( Vì H nằm giữa B và C )

\(\Rightarrow\) 5 + 16 = 21 ( cm )

Vậy AC = 20 cm

       BC = 21 cm 

Học tốt

 

 

 

16 tháng 6 2017

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; BC = 5cm

b, AB = 15cm; AC = 20cm; AH = 12cm; BC = 25cm

26 tháng 1 2016

AC=20cm
BC=21cm
Tick nha 
đỗ thị kim ánh
 

12 tháng 6 2019