K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

a) Vì tam giác ABC cân nên : AB = AC (gt)

                                       AH chung (gt)

                                       H vuông (gt)

=> Tam giác ABH = tam giác AHC ( cạnh huyền và cạnh góc vuông)

b) Vì tam giác ABC cân nên đường cao AH sẽ tạo ra một đường chính giữa AB chia thành 2 phần bằng nhau ( cái này gọi là đường trung trực ) => BH = HC = \(\frac{12}{2}\)= 6 cm.

Áp dụng định lí Pi ta go ta có:

102 - 62 = 64 => \(\sqrt{64}\) = 8 . Vậy AH bằng 8 cm.

c) Xét 2 tam giác ABG và tam giác AGC có:

 AG chung (gt)

AB = AC (gt)

Vì G là trọng tâm của tam giác => G cách đều 3 cạnh cảu tam giác, điều đó có nghĩa là:

GA = GB = GC 

=> GB = GC => Tam giác ABG = ACG

bó tay câu a) để kiếm trong SGK thử!!!!

6756

9 tháng 1 2016

CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ

25 tháng 6 2020

tự kẻ hình nha

a) xét tam giác ABH và tam giác ACH có

AB=AC(gt)

ABC=ACB(gt)

AHB=AHC(=90 độ)

=> tam giác ABH= tam giác ACH( ch-gnh)

b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)

=>HB=HC=BC/2=12/2=6cm

ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2

=> AH=8 (AH>0)

d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến 

mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng

c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC

vì G thuộc AH=> GB=GC

xét tam giác ABG và tam giác ACG có

AB=AC(gt)

GB=GC( cmt)

AG chung

=> tam giác ABG= tam giác ACG(ccc)

chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu

28 tháng 7 2021

a) BD=BC/2=12/2=6

Vậy BC=6cm

Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:

\(AB^2+BD^2=AD^2\)

\(10^2+6^2=136\)

=> AD=\(\sqrt{136}\)

28 tháng 7 2021

b) Tam giác ABC cân tại A, đường cao AD 

=> AD là đường phân giác góc BAC  (1)

Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.

=> AG là pg góc BAC                          (2)

Từ (1) và (2) => AG và AD trùng nhau.

=>A, G, D thẳng hàng