K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Hàm số xác định khi (2m2 + 1)(x2 - 4mx + 2) ≠ 0

⇔ x2- 4mx + 2 ≠ 0

⇔ Δ' < 0

⇔ 4m2 - 2 < 0

⇔ \(\dfrac{-\sqrt{2}}{2}< m< \dfrac{\sqrt{2}}{2}\)

11 tháng 11 2023

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

16 tháng 1 2021

\(y\) có TXĐ là \(\mathbb{R}\) \(\Leftrightarrow (mx+3)(x-2) ≥0\)

TH1: \(\left[ \begin{array}{l}mx+3\\x-2=0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{-3}{m} (m\ne0)\\x=2\end{array} \right.\)

TH2: \(\begin{cases}mx+3>0\\x-2>0\\\end{cases} \Leftrightarrow \begin{cases}x > \dfrac{-3}{m} \\x>2\\\end{cases} \)

TH3: \(\begin{cases}mx+3<0\\x-2<0\\\end{cases} \Leftrightarrow \begin{cases}x < \dfrac{-3}{m}\\x<2\\\end{cases} \)

Vậy...

Tìm m mà bn 

NV
8 tháng 1

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

8 tháng 1

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/tim-m-de-ham-so-sqrtsin4xcos4x4sinxcosxm-5-xac-dinh-tren-r.8744969085814

25 tháng 12 2021

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2

29 tháng 1 2022

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)