K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3

17 tháng 10 2018

bài 1 :

a) ta có : \(\left(x-3\right)\left[x^2+\left(x-1\right)x+k^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\2x^2-x+k=0\end{matrix}\right.\) để phương trình có 3 nghiệm phân biệt

\(\Leftrightarrow2x^2-x+k\) có 2 nghiệm và 2 nghiệm này phải khác 3

\(\Leftrightarrow\left\{{}\begin{matrix}2.3^2-3+k\ne0\\1^2-4.2.k>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ne-15\\k< \dfrac{1}{8}\end{matrix}\right.\)

vậy ...

b) tương tự

2) sữa đề

ta có : \(x^2+3\left(m-3x^2\right)^2=m\)

\(\Leftrightarrow x^2+3\left(m^2-6mx^2+9x^4\right)=m\)

\(\Leftrightarrow27x^4-\left(18m-1\right)x^2-3m^2-m=0\)

phương trình có nghiệm khi phương trình \(27t^2-\left(18m-1\right)t-3m^2-m=0\) có ít nhất 1 nghiệm dương

->...

30 tháng 7 2021

\(a,< =>\Delta=0\)

\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)

\(< =>k^2+2k+1-8-4k=0\)

\(< =>k^2-2k-7=0\)

\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)

b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)

\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)

a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)

\(=k^2+2k+1-4k-8\)

\(=k^2-2k-7\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow k^2-2k-7=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)

Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)

21 tháng 3 2020

a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)

\(\Delta=\left(k-1\right)^2-2k+5\)

\(=k^2-4x+6=\left(k-2\right)^2+2>0\)

=> PT luôn có nghiệm với mọi k

AH
Akai Haruma
Giáo viên
11 tháng 6 2021

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

22 tháng 1 2022

a/ Xét phương trình :  \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)

Ta có :

\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)

\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k

b/ Theo định lí Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)

\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)

\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)

\(\Leftrightarrow k=\pm3\)

Vậy....

 

 

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

20 tháng 4 2021

Hc tốt nhaundefinedundefined

20 tháng 4 2021

Mik chuyên toán nên cứ tin mik bảo đảm đúng