CMR:1/5+1/7+1/9+...+1/101 không là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 6 mà khó vậy, toán này chắc là dành cho mấy cậu ở đội tuyển toán chứ gì?
Tạm giải thế này, có gì sai cao nhân ở đây sửa hi,hi,....
Đặt A = 1/5 + 1/7 + 1/9 + …….. + 1/101. Dễ thấy:
1/6 + 1/8 + 1/10 +……. + 1/102 < A < 1/4 + 1/6 + 1/8 + …….+ 1/100
Suy ra: B + 1/102 < A < 1/4 + B
Nếu B là số tự nhiện thì rõ ràng A không phải là số tự nhiên
Nếu B là phân số và B + 1/102 là số tự nhiên thì 1/4 + B không phải là số tự nhiên và ngược lại. (vì 1/4 + 1/102 <1)
Vậy ta có đpcm
1/5+1/7+1/9+...+1/101 > 1/101+1/101+1/101+...+1/101
1/5+1/7+1/9+...+1/101 > 97/101
97/101 < 1
=> 1/5+1/7+1/9+...+1/101 không là số tự nhiên
bạn chứng minh theo hướng 1/5+1/7+1/9+...+1/101 nằm giữa 2 số tự nhiên suy ra không thuộc N
\(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+.....+\frac{1}{101}\)
\(=\frac{1}{2+3}+\frac{1}{3+4}+\frac{1}{4+5}+....+\frac{1}{50+51}\)
Anh quên mất đoạn sau rồi , nhưng hình như đến đây kl là được rồi đấy
Ta có: \(\frac{1}{5}< \frac{1}{2}=\frac{1}{1.2}\)
\(\frac{1}{7}< \frac{1}{6}=\frac{1}{2.3}\)
.......
\(\frac{1}{101}< \frac{1}{90}=\frac{1}{9.10}\)
=>0<A<\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)
<=>0<A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{9}-\frac{1}{10}\)=1-\(\frac{1}{10}\)
Có 1 -\(\frac{1}{10}\)<1
=>0<A<1
=> A ko là số tự nhiên