K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2015

đúng đó nghĩ mãi ko ra

a: Xét ΔABC có 

CD/CB=CE/CA
nên DE//AB và DE/AB=1/2

=>EM//BF và EM=BF

=>BEMF là hình bình hành

b: Vì BEMF là hình bình hành

nên BM cắt EF tại trung điểm của mỗi đường(1)

Vì AFDE là hình bình hành

nên AD cắt FE tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AD,BM,EF đồng quy

c: Xét tứ giác ADCM có

E là trung điểm chung của AC và DM

nên ADCM là hình bình hành

=>AD=CM

10 tháng 8 2021

Không cần vẽ hình

a: Xét ΔABC có 

CD/CB=CE/CA
nên DE//AB và DE/AB=1/2

=>EM//BF và EM=BF

=>BEMF là hình bình hành

b: Vì BEMF là hình bình hành

nên BM cắt EF tại trung điểm của mỗi đường(1)

Vì AFDE là hình bình hành

nên AD cắt FE tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AD,BM,EF đồng quy

c: Xét tứ giác ADCM có

E là trung điểm chung của AC và DM

nên ADCM là hình bình hành

=>AD=CM

a: Xét ΔABC có 

CD/CB=CE/CA
nên DE//AB và DE/AB=1/2

=>EM//BF và EM=BF

=>BEMF là hình bình hành

b: Vì BEMF là hình bình hành

nên BM cắt EF tại trung điểm của mỗi đường(1)

Vì AFDE là hình bình hành

nên AD cắt FE tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AD,BM,EF đồng quy

c: Xét tứ giác ADCM có

E là trung điểm chung của AC và DM

nên ADCM là hình bình hành

=>AD=CM

12 tháng 5 2017

A B C D E F I G

a) Xét \(\Delta ABC\)\(D\)là trung điểm của \(BC\)\(E\)là trung điểm của \(AC\)\(\Rightarrow\)\(ED\)là đường trung bình của \(\Delta ABC\).

\(\Rightarrow ED\)//\(AB\)và \(ED=\frac{1}{2}AB\)\(F\)là trung điểm của \(AB\)\(\Rightarrow ED=AF=FB=\frac{1}{2}AB\)

\(ED\)//\(AB\Rightarrow ED\)//\(AF\Rightarrow ID\)//\(AF\). Mà \(FI\)//\(AD\).

\(\Rightarrow FI=AD\)và \(ID=AF\)(Tính chất đoạn chắn)

Mà \(ED=AF\Rightarrow ED=ID\).

Xét \(\Delta EDB\)và \(\Delta IDC:\)

\(DB=DC\)

\(\widehat{EDB}=\widehat{IDC}\)(Đối đỉnh)     \(\Rightarrow\Delta EDB=\Delta IDC\)\(\left(c.g.c\right)\)

\(ED=ID\)

\(\Rightarrow\widehat{BED}=\widehat{CID}\)(2 góc tương ứng) và 2 góc này nằm ở vị trí so le trong \(\Rightarrow IC\)//\(BE\)

Đồng thời \(IC=BE\)(2 cạnh tương ứng)

b) \(AD\)//\(FI\Rightarrow\widehat{AGE}=\widehat{FHG}\Rightarrow\widehat{FHG}=90^0\)(Đồng vị). Mà \(BE\)//\(IC\)\(\Rightarrow\widehat{FHB}=\widehat{FIC}=90^0\)(Đồng vị)

\(\Rightarrow\Delta ICF\)là tam giác vuông tại \(I\).

Ta có: \(FI=AD\),\(IC=BE\)(cmt) \(\Rightarrow FI+IC+CF=AD+BE+CF\)(đpcm)