cm 91445-21930chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
\(x+2y⋮5\)
\(\Rightarrow3x+6x⋮5\)
\(\Rightarrow3x+6y+10y=3x+16y\)
\(3x+6y+10y⋮5\)
Vậy 3x + 16y chia hết cho 5
\(x+2y\) chia hết cho 5
\(\Rightarrow3x+6y\) chia hết cho 5
\(\Rightarrow3x+6y+10y\) chia hết cho 5
\(\Rightarrow3x+16y\) chia hết cho 5 (đpcm)
P= 51+52+53+..........+598+599+5100
P= (51+52)+(53+54)+..........+(599+5100)
P= (51+52)(1+52+..........+597+598+599)
P=30.(1+52+..........+597+598+599)chia hết cho 30
con chia het cho 126 ban lam tuong tu nhung (51+52) bang (51+52+53+54+55+56)roi lam tuong tu
Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:
S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)
=(5+52+53+54+55+56)(1+56+...+590)
Ta có
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126
→S⋮126 (ĐPCM)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
b) Chứng minh rằng nếu (5n + 1) là số chẵn thì n là số lẻ.
Giải: Nếu 5n + 1 là số chẵn thì =>
5n + 1 có dạng 2k (k là số tự nhiên)
=> 5n + 1 = 2k
=> 5n = 2k - 1
Do 2k - 1 là số lẻ => 5n là số lẻ (1)
Nếu n là số chẵn thì 5n chẵn => mâu thuẩn với (1)
=> n phải là số lẻ
91444.9=.......1x9=(........9)
21928.4=(......6)x4=(.......4)
Vậy (......9)-(.......4)=(.........5) chia hết cho 5
nha bạn