Cho tam giác ABC vuông tại A có góc ABC = 60. Giá trị của cos (BA, BC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)
\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Vậy: \(\widehat{ACB}=30^0\)
b) Xét ΔADB và ΔEDB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔADB=ΔEDB(c-g-c)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
c) Ta có: BE+EC=BC(E nằm giữa B và C)
BA+AM=BM(A nằm giữa B và M)
mà BE=BA(ΔBED=ΔBAD)
và BC=BM(gt)
nên EC=AM
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔDAB=ΔDEB)
AM=EC(cmt)
Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)
nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADM}+\widehat{ADE}=180^0\)
\(\Leftrightarrow\widehat{EDM}=180^0\)
hay E,D,M thẳng hàng(đpcm)
\(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{16}=\dfrac{15}{16}\\ \Leftrightarrow\sin\alpha=\dfrac{\sqrt{15}}{4}\\ \cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{1}{4}\cdot\dfrac{4}{\sqrt{15}}=\dfrac{1}{\sqrt{15}}=\dfrac{\sqrt{15}}{15}\)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
a: \(\widehat{C}=90^0-60^0=30^0\)
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥CB
a) Xét tam giác ABD và KBD có :
\(\widehat{BAD}=\widehat{BKD}=90^o\)
BD chung
\(\widehat{ABD}=\widehat{KBD}\left(gt\right)\)
=> tam giác ABD = tam giác KBD (ch-gn)
b) Tam giác ABD = tam giác KBD => AB = KB (2 cạnh tương ứng)
c) tam giác ABD = tam giác KBD => AD = KD (2 cạnh tương ứng)
Xét tam giác ADH và tam giác KDC có
\(\widehat{ADH}=\widehat{KDC}\)(đối đỉnh)
AD = KD(cmt)
\(\widehat{DAH}=\widehat{DKC}=90^o\)
=> tam giác ADH = tam giác KDC (g.c.g)
=> DH = DC (2 cạnh tg ứng)
=> tam giác DCH cân tại D
=> \(\widehat{DCH}=\widehat{DHC}\)
a, Xét tam giác ABD vuông tại A và tam giác KBD vuông tại K ta có:
BD: cạnh chung; \(\widehat{ABD}=\widehat{KBD}\)
Do đó \(\Delta ABD=\Delta KBD\)
b, Vì \(\Delta ABD=\Delta KBD\) nên $AB=KB;AD=KD$
c, Xét tam giác ADH vuông tại A và tam giác KDC vuông tại K ta có:
$AD=KD(cmt)$;\(\widehat{ADH}=\widehat{KDC}\)(dd)
Do đó \(\Delta ADH=\Delta KDC\)
Hay DH=DC. Suy ra \(\widehat{DHC}=\widehat{DCH}\)
\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|
\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)
\(B=\frac{1}{4}.4.2.1.2\)
\(B=4\)
Xét \(\Delta ABC\) vuông tại A:
Ta có: \(cos\left(BA;BC\right)=cosABC=cos60^o=\dfrac{1}{2}.\)