Bài 5: Tìm các số nguyên 𝑥, 𝑦 sao cho: 1/8<x/18<y24<2/9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2+3𝑥=−15−19
3x= -15 - 19 -2
3x = -36
x= -12
b) 2𝑥−5=−17+12
2x = -17 + 12 + 5
2x = 0
x = 0
c) 10−𝑥−5=−5−7−11
-x = -5 - 7 - 11 - 10 + 5
-x = -28
x = 28
d) |𝑥|−3=0
|x|= 3
x = \(\pm\)3
e) (7−|𝑥|).(2𝑥−4)=0
th1 : ( 7 - | x| ) = 0
|x|= 7
x=\(\pm\)7
th2: ( 2x-4) = 0
2x = 4
x= 2
f) −10−(𝑥−5)+(3−𝑥)=−8
-10 - x + 5 + 3 - x = -8
-10 + 5 + 3 + 8 = 2x
2x= 6
x = 3
g) 10+3(𝑥−1)=10+6𝑥
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 3
x= -1
h) (𝑥+1)(𝑥−2)=0
th1: x+1= 0
x = -1
x-2=0
x=2
hok tốt!!!
a: =>xy=-18
=>x,y khác dấu
mà x<y<0
nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài
b: =>(x+1)(y-2)=3
\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
c: \(\Leftrightarrow8x-4=3x-9\)
=>5x=-5
hay x=-1
Lời giải:
$2019|y-2020|=1-|x|\leq 1$ do $|x|\geq 0$
$2019|y-2020|\geq 0$
$\Rightarrow 0\leq 2019|y-2020|\leq 1$
Mà $2019|y-2020|$ là số nguyên chia hết cho $2019$ với mọi $y$ nguyên
$\Rightarrow 2019|y-2020|=0$
$\Rightarrow y=2020$
$|x|=1-2019|y-2020|=1-0=1$
$\Rightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1, 2020)$
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
Ta có: 2x=y3=z52x=y3=z5
⇒x=y6=z25⇒x=y6=z25và x+y−z2=−20x+y−z2=−20
Áp dụng tính chất dãy tỉ số bằng nhau, ta được
x=y6=z25=x+y−z21+6−5=−202=−10x=y6=z25=x+y−z21+6−5=−202=−10(vìx+y−z2=−20x+y−z2=−20)
⇒\hept⎧⎨⎩x=−10y=−10⋅6=−60z2=−10⋅5=−50⇒\hept⎧⎨⎩x=−10y=−60z=−100
Có:
x2=y3=z5x2=y3=z5 và x+y+z=20x+y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x2=y3=z5=x+y+z2+3+5=2010=2x2=y3=z5=x+y+z2+3+5=2010=2
⇒x2=2⇒x2=2 ⇒x=2.2=4⇒x=2.2=4
⇒y3=2⇒y3=2 ⇒y=2.3=6⇒y=2.3=6
⇒z5=2⇒z5=2 ⇒z=2.5=10⇒z=2.5=10
Vậy x=4x=4; y=6y=6 và z=10z=10.
Chúc bạn học tốt!
Đk để hệ pt có nghiệm duy nhất: \(\frac{2}{m}\ne\frac{-1}{2}\Leftrightarrow m\ne-4\)
Ta có: \(\hept{\begin{cases}2x-y=8\\mx+2y=m+3\end{cases}\Leftrightarrow\hept{\begin{cases}4x-2y=16\\mx+2y=m+3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4+m\right)x=m+19\\2x-y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2x-8\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2\cdot\frac{m+19}{m+4}-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{2m+38-8m-32}{m+4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{6-6m}{m+4}\end{cases}}\)
Với m khác -4 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{m+19}{m+4};\frac{6-6m}{m+4}\right)\)
Ta có:\(x+y=\frac{m+19}{m+4}+\frac{6-6m}{m+4}=\frac{m+19+6-6m}{m+4}=\frac{25-5m}{m+4}\)
Để \(x+y>0\Leftrightarrow\frac{25-5m}{m+4}>0\)
TH1: \(\hept{\begin{cases}25-5m>0\\m+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}5m< 25\\m>-4\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 5\\m>-4\end{cases}}\Leftrightarrow-4< m< 5\) (tm)
TH2: \(\hept{\begin{cases}25-5m< 0\\m+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}5m>25\\m< -4\end{cases}\Leftrightarrow}\hept{\begin{cases}m>5\\m< -4\end{cases}}}\) (loại)
Vậy...
\(\Leftrightarrow\dfrac{9}{72}< \dfrac{4x}{72}< \dfrac{3y}{72}< \dfrac{16}{72}\)
Suy ra: 4x=12; 3y=15
hay x=3; y=5