so sanh a va b : a= 2013^2012+1/2013^2013+1
b=2013^2013+1/2013^2014+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = 2013^2013+1/2013^2014+1
Ta có: \(B=\frac{2013^{2013}+1}{2013^{2014}+1}< \frac{2013^{2013}+1+2012}{2013^{2014}+1+2012}=\frac{2013^{2013}+2013}{2013^{2014}+2013}=\frac{2013\left(2013^{2012}+1\right)}{2013\left(2013^{2013}+1\right)}=\frac{2013^{2012}+1}{2013^{2013}+1}=A\)
Vậy A > B
Ta có: 1- 2012/2013=1/2013
1- 2013/2014=1/2014
Mà 1/2013>1/2014
vậy 2012/2013<2013/2014
a= (2000+ 14) . (2000+12)= 2000(14+12)= 2000. 168
b= 2000 . 169
vậy b>a
Ta có:
A=2012 x 2014
B = 2013 x 2013 = 2012 x 2014 + 1
Vậy B lớn hơn A
ta có: \(A=\frac{2014^{2013}+1}{2014^{2013}-1}=\frac{2014^{2013}-1+2}{2014^{2013}-1}=1+\frac{2}{2014^{2013}-1}\)
\(B=\frac{2014^{2013}-1}{2014^{2013}-3}=\frac{2014^{2013}-3+2}{2014^{2013}-3}=1+\frac{2}{2014^{2013}-3}\)
\(\Rightarrow\frac{2}{2014^{2013}-1}< \frac{2}{2014^{2013}-3}\)
\(\Rightarrow1+\frac{2}{2014^{2013}-1}< 1+\frac{2}{2014^{2013}-3}\)
=> A < B
\(A=\frac{2014^{2013}+1}{2014^{2014}+1}<\frac{2014^{2013}+1+2013}{2014^{2014}+1+2013}\)
\(=\frac{2014\left(2014^{2012}+1\right)}{2014\left(2014^{2013}+1\right)}\)
\(=\frac{2014^{2012}+1}{2014^{2013}+1}\)\(=B\)
=> A < B
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A