K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

bài này êm nghĩ một tí là ra mà minh k chịu suy nghĩ nhưng làm ra rùi không cần giúp nữa đâu

15 tháng 4 2016

Bạn tự vẽ hình nha.
Ta có : AH.BC=AB.AC ( bằng hai lần diện tích tam giác ABC) nên 2.AH.BC=2.AB.AC(1)
Theo định lí Pi-ta-go, ta có: AC2+AB2=BC2AC2+AB2=BC2(2)
Mà (AH+BC)2=AH2+BC2+2.AH.BC(AH+BC)2=AH2+BC2+2.AH.BC(3)
(AB+AC)2=AB2+AC2+2.AB.AC(AB+AC)2=AB2+AC2+2.AB.AC(4)
Từ (1);(2);(3);(4) suy ra đpcm 

15 tháng 4 2016

Bạn tự vẽ hình nha

Ta có: AH.BC=AB.AC⇔2AH.BC=2AB.ACAH.BC=AB.AC⇔2AH.BC=2AB.AC

                              ⇔AB2+2AB.AC+AC2=2AH2+HB2+HC2+2AH.BC⇔AB2+2AB.AC+AC2=2AH2+HB2+HC2+2AH.BC

                              ⇔(AB+AC)2<2HC.HB+HB2+HC2+2AH.BC+AH2=AH2+2AH.BC+BC2=(AH+BC)2⇔(AB+AC)2<2HC.HB+HB2+HC2+2AH.BC+AH2=AH2+2AH.BC+BC2=(AH+BC)2

                 ((AH2=HC.HB)(AH2=HC.HB)

           ⇒AH+BC>AB+AC

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE
=>ΔAHD=ΔAED

b: DH=DE
DE<DC

=>DH<DC

c: Xét ΔAKC có

CH,KE là đường cao

CH căt KE tại D

=>D là trực tâm

=>AD vuông góc KC