Chứng tỏ đa thức sau vô nghiệm:
N(x)=-5x4-9x2-4
(phân tích ra hằng đẳng thức)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=-\left(5x^4+9x^2+4\right)=-\left(5x^4+5x^2+4x^2+4\right)=-\left(5x^2+4\right)\left(x^2+1\right)< 0\)
Do đó: Đa thức N(x) vô nghiệm
\(x^2+3x-10\)
\(=x^2+5x-2x-10\)
\(=\left(x^2+5x\right)-\left(2x+10\right)\)
\(=x\left(x+5\right)-2\left(x+5\right)\)
\(=\left(x-2\right)\left(x+5\right)\)
Thích hđt thì chiều :))
x2 + 3x - 10
= ( x2 + 3x + 9/4 ) - 49/4
= ( x + 3/2 )2 - ( 7/2 )2
= ( x + 3/2 - 7/2 )( x + 3/2 + 7/2 )
= ( x - 2 )( x + 5 )
dể đa thức x^2 +2x +2 có nghiệm nên suy ra x thuộc ước của 2
thay x lần lượt suy ra pt vô nghiệm
Bài này bn phải phân tích ra đưa về dạng 1 hằng đẳng thức(=(x+1)2) rồi suy ra vô nghiệm, ko nên giải theo cách khác
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
\(\left(2a-b\right)^2-4\left(a-b\right)^2\)
\(=\left(2a\right)^2-2.2a.b+b^2-4.a^2-2.a.b+b^2\)
\(=4a^2-4ab+b^2-4a^2-2ab+b^2\)
\(=-6ab+2b^2\)
x^8+x^4+1=x^8-x^2+x^4-x+x^2+x+1=x^2(x^6-1)+x(x^3-1)+x^2+x+1=x^2(x^3-1)(x^3+1)+x(x^3-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)[x^2(x^3+1)(x-1)+x(x-1)+1)]
Câu 1:8-x^3=2^3-x^3=(2-x)(4+2x+x^2)
Câu 2:Ta có:x^2-5x+4
=(x^2-2x5/2+25/4)-9/4
=(x-5/2)^2-(3/2)^2
=(x-5/2-3/2)(x-5/2+3/2)
=(x-4)(x-1)
->đa thức B là:(x-4)
->hệ số tự do của đa thức B là:-4
\(x^2+x+\frac{1}{2}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)
Vậy đa thức trên vô nghiệm
a, \(\left(4x+5\right)^2=\left(4x+5\right)\left(4x+5\right)=\left[\left(4x+5\right)4x\right]+\left[\left(4x+5\right)5\right]=4x^2+20x+25\)
b, \(\left(5x-2\right)^2=\left(5x-2\right)\left(5x-2\right)=\left[\left(5x-2\right)5x-\left(5x-2\right)2\right]=5x^2-10x+25\)
b, \(8^2-12x^2=\left(8^2-12x^2\right)\left(8^2+12x^2\right)\)
đúng ko :)
@No name: Bị sai rồi nhé, a,b,c sai hết :>
a) ( 4x + 5 )2
= ( 4x )2 + 2.4x.5 + 52
= 16x2 + 40x + 25
b) ( 5x - 2 )2
= ( 5x )2 - 2.5x.2 + 22
= 25x2 - 20x + 4
c) 82 - 12x2
= 64 - 12x2
= ( V8 - V12x )( V8 + V12x )
Ta có :-5x4< hoặc = 0(*)
-9x2< hoặc = 0(**)
-4<0(***)
TỪ (*);(**);(***) suy ra -5x4-9x2-4< hoặc = -4
Vậy đa thức N(x)=-5x4-9x2-4 là vô nghiệm (không có nghiệm)
Huỳnh Thị Thiên Kim: phân tích hằng đẳng thức