cho hinh tu giac ABCD , diem E tren canh AD
a, Ve duong thang3 di qua E va song song voi canh BC, cat Bc tai diem G
b. ve duong thang di qua Bva vuong goc voi canh DC cat canh Dc tai I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có hai điểm H và C cùng nhìn BD dưới 1 góc 90 độ => H và C cùng nằm trên 1 đường tròn đường kính BD => BHCD nnội tiếp đường tròn đường kính BD
b/
Xét hai tam giác vuông BCK và tam giác vuông DHK có
^CBK=^HDK (cùng phụ với ^BKD)
=> tam giác BCK đồng dạng với tam giác DHK
=> \(\frac{KC}{KH}=\frac{KB}{KD}\Rightarrow KC.KD=KH.KB\)
a)Vì ED//BF;BD//EF
\(\Rightarrow\)FEDB là hình bình hành
\(\Rightarrow\)FB=DE
Mà AE=FB\(\Rightarrow\)AE=DE
\(\Rightarrow\)\(\Delta AED\)là tam giác cân
b)Vì ED//AB\(\Rightarrow\widehat{EDA}=\widehat{BAD}\left(1\right)\)
Vì \(\Delta AED\) là tam giác cân
\(\Rightarrow\widehat{EAD}=\widehat{EDA}\left(2\right)\)
Từ (1) và (2) suy ra AD la phan giac cua goc A
\(\Rightarrow\)
a,\(\widehat{C}=180^o-90^o-\widehat{B}=90^o-30^o=60^o\)
b, Xét \(\Delta ACD-vs-\Delta MCD\)
- AC = CM (gt)
- \(\widehat{ACD}=\widehat{MCD}\) (gt)
- CD chung (gt)
=> \(\Delta ACD=\Delta MCD\left(c-g-c\right)\)
c, Ta có:
AK // CD và CK // AD => AK = CD (t/c đoạn chắn)
d, \(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACK}=90^o\\\widehat{ACD}=\widehat{CAK}=\dfrac{1}{2}\widehat{C}=30^o\left(so-le-trong\right)\end{matrix}\right.\Rightarrow\widehat{ADC}=\widehat{AKC}=180^o-90^o-30^o=60^o\)