Cho phương trình y + 5x = 7, hỏi nếu giá trị của ẩn x nằm trong khoảng -2 < x < 4 thì giá trị của y là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0
<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0
* 1-3y=0 <=> y=1/3
* 2y - 10= 0 <=> y=5
vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5
b, Phương trình nhận y=2 làm nghiệm nên ta có:
(2x - 6 + 7)(3x+ 4 - 1)=0
<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0
<=> x=-1/ 2 hoặc x=-1
vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1
a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0
<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0
* 1-3y=0 <=> y=1/3
* 2y - 10= 0 <=> y=5
vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5
b, Phương trình nhận y=2 làm nghiệm nên ta có:
(2x - 6 + 7)(3x+ 4 - 1)=0
<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0
<=> x=-1/ 2 hoặc x=-1
vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1
Thay x=2 và f(x,y)=0 ta đc
\(\left(10-y\right)\left(7+3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10-y=0\\7+3y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=10\\y=\dfrac{-7}{3}\end{matrix}\right.\)
chịu!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+_+
Lời giải:
Để PT là PT bậc nhất 1 ẩn thì:
$m^2-m+1\neq 0$
$\Leftrightarrow (m-\frac{1}{2})^2+\frac{3}{4}>0$
Điều này luôn đúng với mọi $m\in\mathbb{R}$ do $(m-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
Vậy có vô số số thực $m$ thỏa mãn điều kiện đề.
a)
+) Thay x=0 và y=0 vào bất phương trình \(x + 2y \ge 0\), ta được:
\(0 + 2.0 \ge 0 \Leftrightarrow 0 \ge 0\)(Đúng)
=> (0;0) là một nghiệm của bất phương trình \(x + 2y \ge 0\)
+) Thay x=1, y=1 vào bất phương trình \(x + 2y \ge 0\) ta được:
\(1 + 2.1 \ge 0 \Leftrightarrow 3 \ge 0\)(Đúng)
=> (1;1) là một nghiệm của bất phương trình \(x + 2y \ge 0\)
Ta tìm được 2 nghiệm của bất phương trình đã cho là (0;0) và (1;1).
b)
Thay y=0 vào bất phương trình \(x + 2y \ge 0\) ta được:
\(x + 2.0 \ge 0 \Leftrightarrow x \ge 0\)
Ta thấy bất phương trình bài cho tương đương với bất phương trình nên số giá trị của x thỏa mãn bất phương trình đã cho là số x thỏa mãn điều kiện .
Mà ta có vô số giá trị của x thỏa mãn nên có vô số giá trị của x thỏa mãn bất phương trình đã cho.
Chú ý
Ta có thể thử các cặp số khác đối với câu a, miễn là cặp số đấy làm cho bất phương trình đúng.
\(y+5x=7\)
\(\Rightarrow y=7-5x\)
Ta có: \(-2< x< 4\Rightarrow-10< 5x< 20\)
\(\Rightarrow7-20< 7-5x< 7+10\Rightarrow-13< y< 17\)