Tính bằng cách hợp lí
\(\dfrac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^{11}-16^9}=\dfrac{\left(3\cdot2^2\cdot2^{16}\right)^2}{11\cdot2^2\cdot\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\dfrac{3^2\cdot\left(2^2\right)^2\cdot\left(2^{16}\right)^2}{11\cdot2^2\cdot2^{22}-2^{36}}=\dfrac{3^2\cdot2^4\cdot2^{32}}{11\cdot2^{24}-2^{36}}\)
\(=\dfrac{3^2\cdot2^{34}}{11\cdot2^{24}-2^{36}}=\dfrac{3^2\cdot2^{24}\cdot2^{10}}{11\cdot2^{24}-2^{12}\cdot2^{24}}\)
\(=\dfrac{3^2\cdot2^{24}\cdot2^{10}}{\left(11-2^{12}\right)\cdot2^{24}}=\dfrac{3^2\cdot2^{10}}{11-2^{12}}\)
\(=\frac{3^2.4^2.2^{32}}{11.2^{35}-2^{36}}\)
\(=\frac{3^2.4^2.2^{32}}{2^{35}\left(11-2\right)}\)
\(=\frac{3^2.4^2.2^{32}}{2^{35}.3^2}\)
\(=\frac{4^2}{2^3}\)
\(=\frac{2^4}{2^3}\)
\(=2\)
Hk tốt
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3^2.4^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3^2.2^4.2^{32}}{11.2^{35}-2^{35}.2}\)
\(=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(=\frac{9.2^{35}.2}{2^{35}.9}\)
\(=2\)
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
= \(\frac{3^2.4^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
= \(\frac{3^2.4^2.2^{32}}{11.2^{35}-2^{35}.2}\)
= \(\frac{3^2.2^4.2^{32}}{2^{35}.\left(11-2\right)}\)
= \(\frac{3^2.2^{36}}{2^{35}.9}\)
= \(\frac{9.2^{35}.2}{2^{35}.9}\)
= \(2\)
\(\dfrac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\dfrac{\left(3.2^2.2^{16}\right)^2}{11.2^2.\left(2^2\right).11-\left(2^4\right)^9}\)
\(=\dfrac{3^2.\left(2^2\right)^2.\left(2^{16}\right)^2}{11.2^2.2^{22}-2^{36}}\)
\(=\dfrac{3^2.2^4.2^{32}}{11.2^{24}-2^{36}}\)
\(=\dfrac{3^2.2^{34}}{11.2^{24}-2^{36}}\)
\(=\dfrac{3^2.2^{24}.2^{10}}{11.2^{24}-2^{12}.2^{24}}\)
\(=\dfrac{3^2.2^{24}.2^{10}}{\left(11-2^{12}\right).2^{24}}\)
\(=\dfrac{3^2.2^{10}}{11-2^{12}}\)
a, = 3^2.4^2.2^32/11.2^13.2^22-2^36
= 3^2.2^4.2^32/11.2^35-2^36
= 9.2^36/2^35.(11-2)
= 9.2^36/2^35.9 = 2
b, = 134.269+269-133/134.269+135 = 134.269+135/134.269+135 = 1
k mk nha
a, = 3^2.4^2.2^32/11.2^13.2^22-2^36
= 3^2.2^4.2^32/11.2^35-2^36
= 9.2^36/2^35.(11-2)
= 9.2^36/2^35.9 = 2
b, = 134.269+269-133/134.269+135 = 134.269+135/134.269+135 = 1
a) =\(\left[\left(12+1\right)^2+\left(12+2\right)^2\right]:\left(13^2+14^2\right)\)
=1
b)=(1.2.3....8).(9-1-8)
=(1.2.3....8).0
=0
mik chỉ giải được zậy thôi.
t mik nha.
a)
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3^2.4^2.\left(2^{16}\right)^2}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\frac{3^2.\left(2^2\right)^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3^2.2^4.2^{32}}{11.2^{35}-2^{36}}\)
\(=\frac{9.2.2^{35}}{11.2^{35}-2.2^{35}}\)
\(=\frac{18.2^{35}}{2^{35}.\left(11-2\right)}\)
\(=\frac{18.2^{35}}{2^{35}.9}\)
\(=\frac{18}{9}\)
\(=2\)
\(=\dfrac{3^2\cdot2^{36}}{11\cdot2^{13}\cdot2^{22}-2^{36}}=\dfrac{3^2\cdot2^{36}}{2^{35}\cdot9}=2\)