Cho tam giác ABC vuông tại A, phân giác góc B cắt AC tại B. Kẻ DE vuông góc BD (E thuộc BC).
1.Chứng minh: BA-BE
2.K=BA giao với DE. Chứng minh DC=DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=92+122=225⇔BC2=92+122=225
hay BC=15(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên BDAB=CDACBDAB=CDAC(Tính chất tia phân giác của tam giác)
hay BD9=CD12BD9=CD12
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
BD9=CD12=BD+CD9+12=BC21=1521=57BD9=CD12=BD+CD9+12=BC21=1521=57
Do đó:
⎧⎪ ⎪⎨⎪ ⎪⎩BD9=57CD12=57⇔⎧⎪ ⎪⎨⎪ ⎪⎩BD=457cmCD=607cm{BD9=57CD12=57⇔{BD=457cmCD=607cm
Vậy: BD=457cm;CD=607cm
Mình vẽ hình ko qen ak~~
a)
Xét \(\Delta BAD\)và\(\Delta BED\)có
\(\widehat{ABD}=\widehat{DBE\left(gt\right)}\)
\(BD:\)cạnh chung
=>\(\Delta BAD\)=\(\Delta BED\)(cạnh huyền -góc nhọn)
=> BA=BE(đpcm)
a,Xét hai tam giác vuông ABD và EBD có:
BD: cạnh chung
∠ABD=∠EBD (do BD là phân giác góc B)
Suy ra ΔABD=ΔEBD (cạnh huyền- góc nhọn)
Do đó, BA=BE (2 cạnh tương ứng)
b,
Từ phần a suy ra DA=DE (2 cạnh tương ứng)
Xét hai tam giác ADK và EDC có:
∠DAK=∠DEC= 90 độ
DA=DE (chứng minh trên)
∠ADK=∠EDC (2 góc đối đỉnh)
Do đó, ΔADK=ΔEDC (g.c.g)
Suy ra DC = DK (2 cạnh tương ứng)
a, xét tam giác ABD và tam giác EBD có : BD chung
góc ABD = góc EBD do BD là pg của góc ABC (gt)
góc DAB = góc DEB = 90
=> tam giác ABD = tam giác EBD (ch-gn)
=> BA = BE (đn)
b, đề sai sao ý
a.Ta có:
⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)
b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o
→DE⊥BC→DE⊥BC
c.Ta có:
ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o
→ˆBKD=ˆACB→BKD^=ACB^
→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)
→BK=BC→BK=BC
a: Xét ΔBAD vuông taij A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
Suy ra: BA=BE
b: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
DO đó: ΔADK=ΔEDC
Suy ra: DK=DC
1: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE
2: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: DK=DC
1: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
ˆABD=ˆEBDABD^=EBD^
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE
2: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
ˆADK=ˆEDCADK^=EDC^
Do đó: ΔADK=ΔEDC
Suy ra: DK=DC