tìm số tự nhiên x, biết (x-6) mũ 3 =(x-6) mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+....+3^{99}\)
\(3A=3^2+3^3+...+3^{100}\)
\(3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)
\(2A=3^{100}-3\)
\(A=\dfrac{3^{100}-3}{2}\)
\(\Rightarrow2A+3=9^{2x+6}\)
\(\Rightarrow2\cdot\dfrac{3^{100}-3}{2}+3=\left(3^2\right)^{2x+6}\)
\(\Rightarrow3^{100}-3+3=3^{2\left(2x+6\right)}\)
\(\Rightarrow3^{100}=3^{4x+12}\)
\(\Rightarrow4x+12=100\)
\(\Rightarrow4x=88\)
\(\Rightarrow x=22\)
Bài 9,
62x73+36x33=36x73+36x27=36(73+27)=36x100=3600.
197-\([\)6x(5-1)2+20220\(]\):5=197-\([\)6x16+1\(]\):5=197-97:5=197-97/5=888/5.
Bài 10,
21-4x=13
=>4x=21-13=8
=>x=8:4=2.
30:(x-3)+1=45:43=42=16
=>30:(x-3)=16-1=15
=>x-3=30:15=2
=>x=2+3=5.
(x-1)3+5x6=38
=>(x-1)3+30=38
=>(x-1)3=38-30=8=23
=>x-1=2
=>x=3.
Bài làm
\(3\cdot5^x-17=7^6\div7^3+315\)
\(3\cdot5^x-17=7^3+315\)
\(3\cdot5^x-17=343+315\)
\(3\cdot5^x-17=658\)
\(3\cdot5^x=658+17\)
\(3\cdot5^x=675\)
\(5^x=675:3\)
\(5^x=225\)
Hmmm... Đề có bị sai không ạ? Vì 53 = 125; 54 = 625. Nhưng kết quả của 5x = 225. Nên bị lỗi :/
Kiểm tra lại đề xong gửi đề cho mình để mình làm lại cho
\(3^x+4^2=19^6:\left(19^3.19^2\right)-2.1^{2014}\)
\(\Rightarrow\) \(3^x+16=19^6:19^5-2\)
\(\Rightarrow\) \(3^x+16=19-2\)
\(\Rightarrow\) \(3^x+16=17\)
\(\Rightarrow\) \(3^x=1\)
\(\Rightarrow\) \(3^x=3^0\)
\(\Rightarrow\) \(x=0\)
2x + 2x + 2 = 82 - 62 + 22 . 3
= 2x + 2x + 2 = 64 - 36 + 4 . 3
= 2x + 2x + 2 = 64 - 36 + 12
= 2x + 2x + 2 = 28 + 12
= 2x + 2x + 2 = 40
= 2x + 2x = 40 - 2
= 2x + 2x = 38
= 2x . 2 = 38
= 2x = 38 : 2
= 2x = 19
=> x không có giá trị
a) 22 ( x + 32 ) - 5 = 55
=>4(x+9)-5=55
=>4(x+9)=60
=>x+9=15
=>x=6
b)7 ( x + 52 ) - 20 = 190
=>7(x+25)=210
=>x+25=30
=>x=5
c)6 ( x + 23 ) + 40 = 100
=>6(x+8)+40=100
=>6(x+8)=60
=>x+8=10
=>x=2
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
\(\left(x-6\right)^3=\left(x-6\right)^2\)
Đặt \(x-6=a\)\(\Leftrightarrow a^3=a^2\)\(\Leftrightarrow a^3-a^2=0\)\(\Leftrightarrow a^2\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a^2=0\\a-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-6=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)(nhận)
Vậy \(x\in\left\{6;7\right\}\)