K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BĐT tương đương

\(\dfrac{a+c}{b+c}-\dfrac{a}{b}>0\Leftrightarrow\dfrac{ab+bc-ab-ac}{b\left(b+c\right)}>0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)}{b\left(b+c\right)}>0\)\(\Leftrightarrow b-a>0\Leftrightarrow b>a\Leftrightarrow\dfrac{a}{b}< 1\)(đúng vì GT)

10 tháng 5 2018

ta có a+b+c=0       =>     a=-b-c,         b=-a-c,            c=-a-b

thay vào A ta được 

 A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)

   =(1-1-c/b)(1-1-a/c)(1-1-b/a)

   =(-c/b)(-a/c)(-b/a)

   =(-abc)/abc

    =-1

10 tháng 5 2018

bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:

           BÀI LÀM

          \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

    \(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

    \(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

3 tháng 3 2015

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

<=>c(a+b)(a+b+c)=-ab(a+b)

<=>(a+b)(ac+bc+c2)+ab(a+b)=0

<=>(a+b)(ac+bc+ab+c2)=0

<=>(a+b)(a+c)(c+b)=0

       a+b=0

<=> b+c=o

       c+a=0
 

13 tháng 5 2019

Ta có: a+b+c=0a+b+c=0

\Rightarrow b+a=-c⇒b+a=−c

\Rightarrow c+b=-a⇒c+b=−a

\Rightarrow a+c=-b⇒a+c=−b

Ta có: A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)A=(1+
b
a

)(1+
c
b

)(1+
a
c

)

\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)⇒A=(
b
b+a

)(
c
c+b

)(
a
a+c

)

\Rightarrow A=\left(\frac{-c}{b}\right)\left(\frac{-a}{c}\right)\left(\frac{-b}{a}\right)⇒A=(
b
−c

)(
c
−a

)(
a
−b

)

\Rightarrow A=-1⇒A=−1

9 tháng 5 2019

ddap an la bang -1