Cho tam giác ABC vuông tại A. Gọi I là giao điểm của các đường phân giác trong tam giác, M là trung điểm của BC. Biết rằng : góc BIM = 90 độ. Khi đó AB : BC : CA = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Khó mà thú vị... Sorry đã đăng muộn)
Gọi \(T\) là trung điểm \(AB\). Giờ bạn làm theo những gợi ý sau:
Bước 1: Chứng minh \(OBTI\) nội tiếp. Suy ra \(IT=IO\).
Bước 2: Chứng minh \(\widehat{ATI}\) phụ với \(\widehat{IBO}\). Suy ra tam giác \(ATI\) và \(ADI\) bằng nhau.
Bước 3: \(AD=AT=\frac{1}{2}AB\). Suy ra được góc \(\widehat{ABD}\) và suy ra được các góc của tam giác \(ABC\).
Bước 4: Áp dụng tỉ số lượng giác suy ra tỉ lệ cạnh.
a) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)
\(\frac{PA}{PC}=\frac{BA}{BC}\Rightarrow\frac{PA}{CA}=\frac{BA}{BA+BC}\Rightarrow PA=\frac{BA.CA}{BA+BC}=\frac{6.8}{6+10}=3\)
\(BP=\sqrt{AB^2+AP^2}=3\sqrt{5}\)
\(\frac{BI}{PI}=\frac{AB}{AP}\Rightarrow\frac{BI}{BP}=\frac{AB}{AB+AP}\Rightarrow BI=\frac{AB.BP}{AB+AP}=\frac{6.3\sqrt{5}}{6+3}=2\sqrt{5}\)
Ta thấy: \(\frac{BI}{BM}=\frac{2\sqrt{5}}{5}=\frac{6}{3\sqrt{5}}=\frac{BA}{BP}\), suy ra \(\Delta BAP~\Delta BIM\)(c.g.c)
Vậy \(\widehat{BIM}=\widehat{BAP}=90^0.\)
b) Vẽ đường tròn tâm M đường kính BC, BI cắt lại (M) tại N.
Ta thấy \(\widehat{BIM}=\widehat{BNC}=90^0\), suy ra MI || CN, vì M là trung điểm BC nên I là trung điểm BN (1)
Dễ thấy \(\widehat{NIC}=\frac{1}{2}\widehat{ABC}+\frac{1}{2}\widehat{ACB}=\widehat{NCI}\), suy ra NI = NC (2)
Từ (1),(2) suy ra \(\tan\frac{\widehat{ABC}}{2}=\tan\widehat{NBC}=\frac{NC}{NB}=\frac{NI}{NB}=\frac{1}{2}\)
Suy ra \(\tan\widehat{ABC}=\frac{2\tan\frac{\widehat{ABC}}{2}}{1-\tan^2\frac{\widehat{ABC}}{2}}=\frac{4}{3}=\frac{AC}{AB}\)
\(\Rightarrow\frac{AC^2}{AB^2+AC^2}=\frac{16}{9+16}=\frac{16}{25}\Rightarrow\frac{AC}{BC}=\frac{4}{5}\)
Vậy \(AB:AC:BC=3:4:5\)
AB=6,AC=8=>BC=10=>MC=5.Gọi N là chân đg p/giác kẻ từ B.Ta có
...NA/NC=BA/BC=6/10=3/5=>NA=3,NC=5.
...2t/giác NIC và MIC có NC=MC,^NCI=^MCI,cạnh IC chung nên chúng bằng nhau=>^MIC=(^MIN)/2 (*)
...Trong t/g BIM, góc ngoài MIN=(^ABC)/2+^BMI=
...=(^ABC)/2+^MIC+(^ACB)/2=(^MIN)/2+(^...
...=(^MIN)/2+45*
...=>2(^MIN)=^MIN+90*=>^MIN=90*
...=>góc BIM=90*
^BIM=90*=>^BMI=90*-(^ABC)/2=>
...^MIC=^BMI-^MIC=^BMI-(^ACB)/2=
...=90*-(^ABC+^ACB)/2=90*-45*=45*
...Mặt khác ^BIM=90*=>^MIN=90*=>
...^MIC=^NIC.
...2 t/gMIC và NIC có IC chung,^MIC=^NIC,
...^MCI=^NCI nên chúng bằng nhau=>NC=MC
...=>NC/BC=1/2
...BN là p/giác nên NC/BC=NA/AB=AC/(AB+BC)
...Vậy BC+AB=2AC (*)
...Mà BC^2-AB^2=AC^2(**)
...Lấy (**) chia (*)=>BC-AB=AC/2 (***)
...(*),(***)=>BC=5AC/4;AB=3AC/4
...Vậy BC:AC:AB=5:4:3 hay
...AB,AC,BC tỷ lệ với 3,4,5
1: Xét ΔBIC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)
hay \(\widehat{BIC}=135^0\)
\(\Leftrightarrow\widehat{CID}=180^0-135^0=45^0\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có BD là phân giác
nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)
=>\(\dfrac{DA}{6}=\dfrac{DC}{10}\)
=>\(\dfrac{DA}{3}=\dfrac{DC}{5}\)
mà DA+DC=AC=8cm(D nằm giữa A và C)
nên \(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)
=>\(DA=3\cdot1=3cm;DC=5\cdot1=5cm\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}=5\left(cm\right)\)
mà DC=5cm
nên CM=CD
Xét ΔCDI và ΔCMI có
CD=CM
\(\widehat{DCI}=\widehat{MCI}\)
CI chung
Do đó: ΔCDI=ΔCMI
=>\(\widehat{CID}=\widehat{CIM}\) và \(\widehat{IMC}=\widehat{IDC}\)(3)
Ta có: \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}\)(góc IDC là góc ngoài tại đỉnh D của ΔABD)
nên \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}=90^0+\widehat{ABD}\)(2)
Xét ΔBIM có \(\widehat{IMC}\) là góc ngoài tại đỉnh M
nên \(\widehat{IMC}=\widehat{MIB}+\widehat{MBI}\left(1\right)\)
Từ (1),(2),(3) suy ra \(\widehat{MIB}+\widehat{MBI}=90^0+\widehat{ABD}\)
mà \(\widehat{MBI}=\widehat{ABD}\)
nên \(\widehat{MIB}=90^0\)
3:5:4
dùng phương pháp hình học :3
đáp số: 3:5:4