K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

CMR thì sao lại tìm n (?_?)

19 tháng 4 2016

nham CM nha

4 tháng 2 2016

(n+5)(n+6) : 6n = 1/6 ( n +  11 + 30/n )                                                                                                             để chia hết thì n là ước của 30 và n + 11+ 30/n chia hết cho 6

vậy

n = 1, 3 ,10 , 30

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe

19 tháng 4 2016

n^2+5n=(n^2-n)+6n do đó ta cần chỉ ra khi nào n^2-n chia hết cho 6 . Ta có : n^2-n=n.(n-1) . Đây là tích hai số tự nhiên liên tiếp nên chia hết cho 2 . Để tích này chia hết cho 6 thì nó cần chia hết cho 3. Do 3 là số nguyên tố nên một trong hai số n và n-1 chia hết cho 3. Ta suy ra n có dạng 3k hoặc 3k+1 . Thử lại thấy đúng . 

Vậy chỉ khi n có dạng 3k hoặc 3k+1 thì bài toán được nghiệm đúng . Trường hợp n=2 là dạng 3k+2

19 tháng 4 2016

Điều đó không xảy ra khi (n;5)=1;(n;6)=1

6 tháng 4 2020

2n + 1 chia hết cho n - 3

Ta có: 2n + 1 = 2( n - 3) + 7

Để 2n +1 chia hết cho n -3 thì 7 chia hết cho n - 3

=> n - 3 thuộc Ư(7) = { 1;-1;7;-7 }

=> n thuộc { 4;3;10;-4 }

6n+4 chia hết cho 2n+1

Ta có: 6n+4=3(2n+1)+1

Để 6n+4 chia hết cho 2n+1 thì 1 chia hết cho 2n + 1

=> 2n+1 thuộc Ư( 1)={1;-1}

=> n thuộc {0; -1}

8 tháng 4 2020

Ta có 2n+1=2(n-3)+7

=> 7 chia hết cho n-3

n nguyên => n-3 nguyên => n-3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-3-7-117
n-42410

*) Ta có 6n+4=3(2n+1)+1

=> 1 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)

Nếu 2n+1=-1 => 2n=-2 => n=-1

Nếu 2n+1=1 => 2n=0 => n=0

8 tháng 4 2020

2n + 1 chia hết cho n - 3
2n + 1 = 2n - 6 + 7 = 2(n - 3) + 7
Vì 2n + 1 chia hết cho n - 3 và 2(n - 3) chia hết cho n - 3
=> 7 chia hết cho n - 3
=> n - 3 là ước nguyên của 7 
Ta có bảng sau :
 

n - 317-1-7
n4102-4