Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+5)(n+6) : 6n = 1/6 ( n + 11 + 30/n ) để chia hết thì n là ước của 30 và n + 11+ 30/n chia hết cho 6
vậy
n = 1, 3 ,10 , 30
n^2+5n=(n^2-n)+6n do đó ta cần chỉ ra khi nào n^2-n chia hết cho 6 . Ta có : n^2-n=n.(n-1) . Đây là tích hai số tự nhiên liên tiếp nên chia hết cho 2 . Để tích này chia hết cho 6 thì nó cần chia hết cho 3. Do 3 là số nguyên tố nên một trong hai số n và n-1 chia hết cho 3. Ta suy ra n có dạng 3k hoặc 3k+1 . Thử lại thấy đúng .
Vậy chỉ khi n có dạng 3k hoặc 3k+1 thì bài toán được nghiệm đúng . Trường hợp n=2 là dạng 3k+2
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
CMR thì sao lại tìm n (?_?)
nham CM nha