K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2022

\(8x^3+4x^2-y^3-y^2\\ =\left(8x^3-y^3\right)+\left(4x^2-y^2\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x-y\right)\left(2x+y\right)\\ =\left(2x-y\right)\left(4x^2+2xy+y^2+2x+y\right)\)

10 tháng 12 2021

Bài 1: 

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\cdot\left(2x-y\right)\left(4x^2-4xy+y^2\right)\)

\(=\left(2x-y\right)^4\cdot\left(4x^2+2xy+y^2\right)\)

15 tháng 12 2017

Bn cho vào trg ngoặc đi viết thế này khó hiểu quá

15 tháng 12 2017

chuẩnnhonhung

12 tháng 10 2023

a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)

b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)

c: \(2x-1-x^2\)

\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)

d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)

g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)

\(=\left(5-x\right)\left(5+3x\right)\)

h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)

\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)

\(=3x\left(-x+2\right)\)

i: \(=x^2y^2-4xy+4-3\)

\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)

k: \(=y^2-\left(x-1\right)^2\)

\(=\left(y-x+1\right)\left(y+x-1\right)\)

l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)

m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)

10: \(x\left(x-y\right)+x^2-y^2\)

\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+x+y\right)\)

\(=\left(x-y\right)\left(2x+y\right)\)

11: \(x^2-y^2+10x-10y\)

\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+10\right)\)

12: \(x^2-y^2+20x+20y\)

\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)

\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+20\right)\)

13: \(4x^2-9y^2-4x-6y\)

\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)

\(=\left(2x+3y\right)\left(2x-3y-2\right)\)

14: \(x^3-y^3+7x^2-7y^2\)

\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)

15: \(x^3+4x-\left(y^3+4y\right)\)

\(=x^3-y^3+4x-4y\)

\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)

16: \(x^3+y^3+2x+2y\)

\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)

17: \(x^3-y^3-2x^2y+2xy^2\)

\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)

\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)

18: \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

8 tháng 12 2023

Phân tích đa thức thành nhân tử nha

8 tháng 10 2021

\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)

a: \(50x^5-8x^3\)

\(=2x^3\left(25x^2-4\right)\)

\(=2x^3\left(5x-2\right)\left(5x+2\right)\)

b: \(x^4-5x^2-4y^2+10y\)

\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)

\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)

c: \(36a^2+12a+1-b^2\)

\(=\left(6a+1\right)^2-b^2\)

\(=\left(6a+1-b\right)\left(6a+1+b\right)\)

d: \(x^3+y^3-xy^2-x^2y\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\cdot\left(x-y\right)^2\)

e: Ta có: \(4x^2+4x-3\)

\(=4x^2+6x-2x-3\)

\(=2x\left(2x+3\right)-\left(2x+3\right)\)

\(=\left(2x+3\right)\left(2x-1\right)\)

f: Ta có: \(9x^4+16x^2-4\)

\(=9x^4+18x^2-2x^2-4\)

\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)

\(=\left(x^2+2\right)\left(9x^2-2\right)\)

g: Ta có: \(-6x^2+5xy+4y^2\)

\(=-6x^2+8xy-3xy+4y^2\)

\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)

\(=\left(3x-4y\right)\left(-2x-y\right)\)

h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)

\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)

\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)

\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)

6 tháng 8 2023

Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức

H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)