cho hai đường thẳng (d1):y=2x-2 và (d2):y=3-4x. Tung độ giao điểm của hai đường thẳng là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm của d 1 v à d 2 ta được:
2 x – 2 = 3 – 4 x ⇔ 6 x = 5 ⇔ x = 5 6
Thay x = 5 6 vào phương trình đường thẳng d 1 : y = 2 x – 2 ta được:
y = 2. 5 6 − 2 = − 1 3
Đáp án cần chọn là: A
Gọi \(A\left(x_0;y_0\right)\) là giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y_0=-3x_0-7\\y_0=2x_0+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{4}{5}\\y_0=-\dfrac{23}{5}\end{matrix}\right.\)
\(\Rightarrow M\left(-\dfrac{4}{5};-\dfrac{23}{5}\right)\)
Xét phương trình hoành độ giao điểm của d 1 v à d 2 ta được:
x – 1 = 2 – 3 x ⇔ 4 x = 3 ⇒ x = 3 4
Thay x = 3 4 vào phương trình đường thẳng d 1 : y = x – 1 ta được:
y = 3 4 − 1 = − 1 4
Đáp án cần chọn là: D
a:
b: Phương trình hoành độ giao điểm là:
4x-2=-x+3
=>4x+x=3+2
=>5x=5
=>x=1
Thay x=1 vào y=-x+3, ta được:
\(y=-1+3=2\)
Vậy: M(1;2)
c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox
(d1): y=4x-2
=>\(tan\alpha=4\)
=>\(\alpha=76^0\)
(d2): y=-x+3
=>\(tan\beta=-1\)
=>\(\beta=135^0\)
d: Thay y=6 vào (d1), ta được:
4x-2=6
=>4x=8
=>x=2
=>A(2;6)
Thay x=6/2=3 vào (d2), ta được:
\(y=-3+3=0\)
vậy: B(3;0)
Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)
Vậy: (d): y=-6x+18
e: A(2;6); B(3;0); M(1;2)
\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)
\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)
Chu vi tam giác AMB là:
\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)
Xét ΔAMB có
\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)
=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)
Xét ΔAMB có
\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)
=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)
=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)
=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)
Phương trình hoành độ giao điểm của d 1 v à d 2 là:
4 − x 3 = 8 − 2 x ⇔ 24 – 6 x = 4 – x ⇔ 5 x = 20 ⇒ x = 4 ⇒ y = 0 nên A (4; 0)
+) B (0; yB) là giao điểm của đường thẳng d1 và trục tung. Khi đó y B = 4 − 0 3
y B = 4 3
Suy ra tổng tung độ y A + y B = 0 + 4 3 = 4 3
Đáp án cần chọn là: A
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-2=3-4x\\y=2x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}\\y=\dfrac{5}{3}-2=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Tung độ giao điểm là -1/3
Xét phương trình hoành độ giao điểm của d1 và d2,ta được:2x−2=3−4x⇔6x=5⇔
x=5/6
Thay x=5/6 vào phương trình đường thẳng d1:y=2x−2,ta được :y=2.5/6-2=-1/3.