1/2+1/4+...+1/50+1/52
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{50\cdot51\cdot52}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}-\dfrac{1}{51\cdot52}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{51\cdot52}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1325}{2652}=\dfrac{1325}{5304}\)
Lời giải:
a.
$A=1+3^2+3^4+....+3^{50}$
$3^2A=3^2+3^4+3^6+....+3^{52}$
$\Rightarrow 3^2A-A=(3^2+3^4+3^6+....+3^{52}) - (1+3^2+3^4+....+3^{50})$
$\Rightarrow 8A=3^{52}-1$
$\Rightarrow A=\frac{3^{52}-1}{8}$ (đpcm)
b.
Có: $8A=3^{52}-1=(3^4)^{13}-1=81^{13}-1$
$\Rightarrow 8A+1=81^{13}$ (đpcm)
Hình như câu này chỉ sử dụng câu lệnh for... to... do hay sao thoii í cậu. Thầy tớ gợi í thế
a)
uses crt;
var b:real;
i:integer;
begin
clrscr;
i:=10;
b:=1;
while i<=30 do
begin
b:=b*i;
i:=i+1;
end;
writeln('B=',b:0:0);
readln;
end.
b) uses crt;
var c,j:integer;
begin
clrscr;
j:=50;
c:=0;
while j<=100 do
begin
c:=c+j;
j:=j+1;
end;
writeln('C=',c);
readln;
end.
c) uses crt;
var i,d:integer;
begin
clrscr;
i:=-50;
d:=0;
while i<=50 do
begin
d:=d+i;
inc(i);
end;
writeln('D=',d);
readln;
end.
d) uses crt;
var n,i:integer;
e:real;
begin
clrscr;
write('n='); readln(n);
e:=0;
for i:=1 to n do
e:=e+1/(i*(i+2));
writeln('E=',e:4:2);
readln;
end.
a) 50 + 48 + 46 + ... + 4 - 47 - 45 - 43 - ... - 1
= (50 - 45) + (48 - 43) + (46 - 41) + ... + (6 - 1) + (4 - 47)
=72
Cứ gộp nhóm làm sao cho trong ngoặc đó bằng 5
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + ... + 50 - 51 - 52 + 53 + 54
= (1 + 54) + (2 + 53) - (3 + 52) - (4 + 51) + ... + (25 + 30) + (26 + 29) - (27 + 28)
=55
Cứ gộp nhóm làm sao cho trong ngoặc đó bằng 55. Còn dấu đằng trước nhóm thì theo dấu đề bài cho
~ Học tốt ~
S = 1 x 3 + 2 x 4 + 3 x 5 + 4 x6 + ...+ 49 x 51 + 50 x 52
S = ( 1 x3 + 3 x5 + ..+ 49x51) + (2x4+4x6+...+50x52)
Đặt A = 1x3+3x5+...+49x51
=> 6A = 1x3x6+3x5x6+...+49x51x6
6A = 1x3x(5+1) + 3x5x(7-1) + ...+ 49x51x(53-47)
6A = 1x3x5 + 1x3 + 3x5x7 - 1x3x5 + ...+ 49x51x53 - 47x49x51
6A = (1x3 + 1x3x5 + 3x5x7+...+49x51x53) - (1x3x5+...+47x49x51)
6A = 1x3 + 49x51x53
A = 22 075
Tương tự như trên ta có: B = 2x4 + 4x6 + ...+ 50x52
B = 23 400
Thay B ;A vào S
S = 22 075 +23 400
S = 45 475