Cho hình vuông ABCD có độ dài cạnh là 1cm. Trên AB và AD lấy P và Q sao cho chu vi tam giác APQ là 2cm. Chứng minh góc PCQ có số đo là 45 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ thêm CH ⊥ PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
BC = DC = 1; BM = QD => CM = CQ (2)
Xét Δvuông BCM và Δvuông DCQ
CM = CQ (cmt)
BM=DQ (cmt)
=> Δ vuông BCM = Δ vuông DCQ
Xét Δ CPM và ΔCPQ có
CP chung;
PM = PQ;
CM = CQ
=>Δ CPM = ΔCPQ
=> ^CPH = ^CPB
=> Δ vuông CPH = Δ vuông CPB
=> ^PCH = ^PCB (3) và CH = CB = 1; PH = PB
=> QH = BM ( vì PQ = PM)
=> Δ vuông CQH = Δ vuông BMC = Δ vuông DCQ
=> ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ
=> 2^PCQ = 90o
=> ^PCQ = 45o
Câu hỏi của nguyễn nam dũng - Toán lớp 7 - Học toán với OnlineMath
eM THAM KHẢO NHÉ!
Hạ CH vuông góc PQ, vẽ hình vông BCEF trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
= > BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ
Từ 1 và 2 => tg CPM = tg CPQ
PCH = PCB ( 3 ) và CH = CB = 1; PH = PB => QH = BM => tg vuông CQH = tg vuông BMC = tg vuông DCQ => DCQ = HCQ (4)
Từ (3) và (4) => PCQ = PCH + HCQ = PCB + DCQ = 90 độ - PCQ => 2 ^ PCQ = 90 độ => PCQ = 40 độ
Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45 do
nho cho minh 1 tick nha
Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45o
Kẻ thêm CH ⊥ PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> Δvuông BCM = Δvuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2)
=> Δ CPM = ΔCPQ ( vì có CP chung; PM = PQ; CM = CQ)
=> ^CPH = ^CPB
=> Δ vuông CPH = Δ vuông CPB
=> ^PCH = ^PCB (3) và CH = CB = 1; PH = PB
=> QH = BM ( vì PQ = PM)
=> Δ vuông CQH = Δ vuông BMC = Δ vuông DCQ
=> ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ
=> 2^PCQ = 90o
=> ^PCQ = 45o
Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45o