tổng tất cả hệ số của các hạng tử trong đa thức (x^2+x-2)*(x^2-3x+5)*(x^2+5x-7)*(x^4-6x+12) sau khi thu gọn là
giải nhanh giúp mình nha
mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
a) Ta có: \(P\left(x\right)=2+5x^2-3x^3+4x^2-2x-x^3+6x^5\)
\(=6x^5-\left(3x^3+x^3\right)+\left(5x^2+4x^2\right)-2x+2\)
\(=6x^5-4x^3+9x^2-2x+2\)
a, \(P\left(x\right)=2+5x^2-3x^3+4x^2-2x-x^3+6x^5\)
\(=2+9x^2-4x^3-2x+6x^5\)
\(=6x^5-4x^3+9x^2-2x+2\)
b, Hệ số khác 0 của đa thức P(x) là 6;-4;9;-2;2
Study well !
Ta có P(x) = 2 + 5x2 – 3x3 + 4x2 – 2x – x3 + 6x5.
a) Thu gọn P(x) = 2 + 9x2 – 4x3 - 2x + 6x5
Sắp xếp theo thứ tự giảm của biến:
P(x) = 6x5 – 4x3 + 9x2 – 2x + 2
b) Hệ số lũy thừa bậc 5 là 6
Hệ số lũy thừa bậc 3 là -4
Hệ số lũy thừa bậc 2 là 9
Hệ số lũy thừa bậc 1 là -2
Hệ số lũy thừa bậc 0 là 2.
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)