K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

Đặt \(n^2+2021=k^2\left(k\in N\right)\)

\(\Rightarrow k^2-n^2=2021\\ \Rightarrow\left(k-n\right)\left(k+n\right)=2021\)

Mà \(k,n\in N\)

\(\Rightarrow\left(k-n\right)\left(k+n\right)=2021\cdot1=43\cdot47\)

\(\left\{{}\begin{matrix}k-n=2021\\k+n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=-1010\left(loại\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}k-n=1\\k+n=2021\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=1010\end{matrix}\right.\left(nhận\right)\)

\(\left\{{}\begin{matrix}k-n=43\\k+n=47\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=2\end{matrix}\right.\left(nhận\right)\)

\(\left\{{}\begin{matrix}k-n=47\\k+n=43\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=-2\left(loại\right)\end{matrix}\right.\)

Vậy \(n\in\left\{2;1010\right\}\)

6 tháng 1 2022

Giả sử n2+2021 là SCP

 \(Đặtn^2+2021=k^2\left(k\in N\right)\\ \Rightarrow n^2-k^2=-2021\\ \Rightarrow\left(n-k\right)\left(n+k\right)=-2021\)

Vì \(n,k\in N\Rightarrow\left\{{}\begin{matrix}n-k< n+k\\n-k,n+k\in Z\\n-k,n+k\inƯ\left(-2021\right)\end{matrix}\right.\)

Ta có bảng:

n-k-43-47
n+k4743
n2-2

Mà n∈N⇒n=2

Vậy n=2

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

29 tháng 3 2022

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

30 tháng 8 2021

Đặt \(a^2=n^2-n+2\left(a\in Z\right)\)

\(\Rightarrow4a^2=4n^2-4n+8\)

\(\Leftrightarrow4a^2=\left(2n-1\right)^2+9\)

\(\Leftrightarrow4a^2-\left(2n-1\right)^2=9\)

\(\Leftrightarrow\left(2a-2n+1\right)\left(2a+2n-1\right)=9\)

Phương trình ước số cơ bản.

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

3 tháng 8 2023

A là số chính phương nên: \(A=n^2+n+6=k^2\)

\(\Rightarrow4n^2+4n+24=4k^2\)

\(\Rightarrow4n^2+4n+1+23=4k^2\)

\(\Rightarrow\left(2n+1\right)^2+23=4k^2\)

\(\Rightarrow4k^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=23\)

Do \(k,n\in N\) nên: \(2k+2n+1>2k-2n-1\)

Ta có hệ:

\(\left\{{}\begin{matrix}2k+2n+1=23\\2k+2n+1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2k+2n+1=23\\4k=24\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}12+2n+1=23\\k=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2n+13=23\\k=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2n=10\\k=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n=5\\k=6\end{matrix}\right.\)

Vậy: n=5

17 tháng 11 2018

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)