tìm số nguyên để
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(D=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(=\frac{2a+9+5a+17-3a}{a+3}\)
\(=\frac{4a+26}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
\(\Rightarrow14⋮a+3\)
\(\Rightarrow a+3\inƯ\left(14\right)\)
Đến đây làm nốt
Đặt \(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(\Rightarrow A=\frac{\left(2a+9\right)+\left(5a+17\right)-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)
\(=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
Vì \(4\inℤ\)\(\Rightarrow\)Để A nguyên thì \(14⋮\left(a+3\right)\)\(\Rightarrow a+3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
Vậy \(a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{4a+26}{a+3}\)
Để Phân số trên nguyên
=> 4a + 26 chia hết cho a + 3
=> 4a + 12 + 14 chia hết cho a + 3
Vì 4a + 12 chia hết cho a + 3
=> 14 chia hết cho a + 3
=> a + 3 thuộc Ư(14)
=> a + 3 thuộc {1; -1; 2; -2; 7; -7; 14; -14}
=> a thuộc {-2; -4; -1; -5; 4; -11; 11; -17}
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)
\(=\frac{4a+12}{a+3}+\frac{14}{a+3}=\frac{4\left(a+3\right)}{a+3}+\frac{14}{a+3}=4+\frac{14}{a+3}\in Z\)
\(\Rightarrow\frac{14}{a+3}\in Z\Rightarrow\)14 chia hết cho a+3
=>a+3=-14;-7;-2;-1;1;2;7;14
=>a=-17;-10;-5;-4;-2;-1;4;11
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}\)
=> 4a+26 chia het cho a+3
=> 4a+12+14 chia het cho a+3
=> 4(a+3) +14 chia het cho a+3
=> 14 chia het cho a+3
=> a+3= -1;1;-2;2;-7;7;-14;14
=> a= -4;-2;-5;-1;-10;4;-17;11
Sửa đề :\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}+\frac{3a}{a+3}\)
\(=\frac{2a+9+5a+17+3a}{a+3}\)
\(=\frac{10a+26}{a+3}\)
\(=\frac{10a+30-4}{a+3}\)
\(\Rightarrow4⋮a+3\)
\(\Rightarrow a+3\in\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow a\in\left(-2;-4;-1;-5;1;-7\right)\)
Ta có:
B = \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
B = \(\frac{\left(2a+9\right)-\left(5a+17\right)-3a}{a+3}\)
B = \(\frac{2a+9-5a-17-3a}{a+3}\)
B = \(\frac{-6a-8}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}=-6+\frac{10}{a+3}\)
Để B \(\in\)Z <=> 10 \(⋮\)a + 3 <=> a + 3 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Lập bảng :
a + 3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
a | -2 | -4 | -1 | -5 | 2 | -8 | 7 | -13 |
Vậy ...
\(B=\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(B=\frac{2a+9-5a-17-3a}{a+3}\)
\(B=\frac{-6a-8}{a+3}\inℤ\)
\(\Leftrightarrow-6a-8⋮a+3\)
\(\Rightarrow-6a-18+10⋮a+3\)
\(\Rightarrow-6\left(a+3\right)+10⋮a+3\)
\(\Rightarrow10⋮a+3\)
\(\Rightarrow a+3\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)
\(\Rightarrow a\in\left\{-4;-2;-5;-1;-8;2;-13;7\right\}\)
Để 2a+9/a+3 là số nguyên thì 2a + 9 ⋮ a + 3
<=> a + a + 3 + 3 + 3 ⋮ a + 3
<=> ( a + 3 ) + ( a + 3 ) + 3 ⋮ a + 3
<=> 2.( a + 3 ) + 3 ⋮ a + 3
Vì 2.( a + 3 ) ⋮ a + a . Để 2.( a + 3 ) + 3 ⋮ a + 3 <=> 3 ⋮ a + 3
=> a + 3 ∈ Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
Ta có : a + 3 = - 3 => a = - 6 ( chọn )
a + 3 = - 1 => a = - 4 ( chọn )
a + 3 = 1 => a = - 2 ( chọn )
a + 3 = 3 => a = 0 ( chọn )
Vậy a ∈ { - 6 ; - 4 ; - 2 ; 0 }
Các câu khác làm tương tự