K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)

Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)

21 tháng 12 2019

a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

\(a,a+1\) là 2 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)

\(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)

b, \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=a\left[2a-3-2\left(a+1\right)\right]\)

\(=-5a\) chia hết cho \(5\left(đpcm\right)\)

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

19 tháng 7 2016

thiếu đề a phải thuộc Z thì phải

15 tháng 6 2021

Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)

Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)

Để \(A\inℕ\Rightarrow10^n-2020⋮6\)

Nhận thấy 10n = (4 + 6)n = 4 +B(6) 

=> 10n chia 6 dư 4

mà 2020 chia 6 dư 4

=> 10n - 2020 \(⋮\)

=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)

Từ (1) và (2) => A \(\inℕ\)

8 tháng 12 2018

a) a2(a+1)+2a(a+1) =(a+1)(a2+2a)=(a+1)(a+2)a

3 số tự nhiên liên tiếp chia hết cho 6 => đpcm

b) a(2a-3)-2a(a+1) = a[(2a-3)-2(a+1)] =a(2a-3-2a-2)

= -5a ⋮ 5 (đpcm)

c) \(x^2-x+1=x^2-2.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)Do \(\left(x-\dfrac{1}{4}\right)^2\ge0\forall x\)

=> \(\left(x-\dfrac{1}{4}\right)^2+\dfrac{3}{4}>0\) (đpcm)

d) \(-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)Do - (x-2)2 ≤ 0 với mọi x

=> -(x-2)2-1 <0 (đpcm)