cho a,b,c thuoc N* xa x+y+z=s=S biet :
S1=b/a.x+c/a.z
S2=a/b.x+c/d.z
S3=a/c.z+b/c.y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_1+S_2+S_3=\left[\frac{b}{a}x+\frac{c}{a}z\right]+\left[\frac{a}{b}x+\frac{c}{b}y\right]+\left[\frac{a}{c}z+\frac{b}{c}y\right]\)
\(=\left[\frac{b}{a}x+\frac{a}{b}x\right]+\left[\frac{c}{b}y+\frac{b}{c}y\right]+\left[\frac{c}{a}z+\frac{a}{c}z\right]\)
\(=\left[\frac{b}{a}+\frac{a}{b}\right]x+\left[\frac{c}{b}+\frac{b}{c}\right]y+\left[\frac{c}{a}+\frac{a}{c}\right]z\)
\(S_1+S_2+S_3\ge2x+2y+2z=2\left[x+y+z\right]=2\cdot5=10\)
Vậy : \(S_1+S_2+S_3\ge10\)
Lấy S1 + S2 + S3, thay phép tính vào, sử dụng tính chất phân phối
KẾT QUẢ: S1 + S2 + S3 >, = 2.(X + Y+ Z) = 2.5 = 10
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
Suy ra \(\left\{{}\begin{matrix}bz=cy\Leftrightarrow\dfrac{y}{b}=\dfrac{z}{c}\\cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\\ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)
p/s: đã sửa đề