3/3.4+3/4.5+.....+3phan 99.100= ?
ghi ca cach lam
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
1.2+2.3+3.4+4.5+...+99.100
=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101
=99.100.101=999900
=999900:3=333300
Gọi A = 1.2 + 2.3 + 3.4 +...+ 99.100
3A = 1.2.(3 - 0) + 2.3.(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 89.99.100
= 99.100.101 = 999900
A = 999900 : 3 = 333300
vậy A = 333300
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
=> A = (99.100.101):3
A = 333300
Vậy A = 333300
3A = 2.3.3 + 3.4.3 + 4.5.3 + ... + 99.100.3
3A = 2.3.(4-1) + 3.4.(5 -2) + 4.5.(6 - 3) + ... + 99.100.(101 - 98)
3A = 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + ... + 99.100.101 - 98.99.100
3A = (2.3.4 + 3.4.5 + 4.5.6 + ... + 99.100.101) - (1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100)
3A = 99.100.101 - 1.2.3
3A = 999900 - 6
3A = 999894
A = 999894 : 3
A = 333298
f,F=3. (1/2 .3 + 1/3.4 +...+ 1/99.100)
= 3. (1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
= 3. (1/2 - 1/100)
= 3. 49/100
= 147/100
g, G = 5/3. (3/1.4 + 3/4.7 +...+ 3/61.64)
= 5/3 . (1 - 1/4 + 1/4 - 1/7 +...+ 1/61 - 164
= 5/3 . (1-1/64)
= 5/3 . 63/64
= 105/64
f, \(F=\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(\Leftrightarrow F=3\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Leftrightarrow F=3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Leftrightarrow F=3\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\Leftrightarrow F=3\left(\frac{49}{100}\right)=\frac{147}{100}\)
g, \(G=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{61.64}\)
\(\Leftrightarrow G=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{61.64}\right)\)
\(\Leftrightarrow G=5.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{64}\right)\)
\(\Leftrightarrow G=\frac{5}{3}\left(1-\frac{1}{64}\right)\)
\(\Leftrightarrow G=\frac{5}{3}.\frac{63}{64}=\frac{105}{64}\)
\(G=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{61.64}\)
\(\Rightarrow G=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+..+\frac{3}{61.64}\right)\)
\(\Rightarrow G=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+..+\frac{1}{61}-\frac{1}{64}\right)\)
\(\Rightarrow G=\frac{5}{3}.\left(1-\frac{1}{64}\right)=\frac{5}{3}.\frac{63}{64}\)
\(\Rightarrow G=\frac{5.63}{3.64}=\frac{5.21.3}{3.64}=\frac{5.21}{64}=\frac{105}{64}\)