K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

Ta xét : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{20}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)

\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\)

Vì \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)

nên \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\) ( đpcm )

23 tháng 6 2017

Đặt \(A=\frac{10}{11!}+\frac{11}{12!}+\frac{12}{13!}+...+\frac{2014}{2015!}\)

\(=\frac{11-1}{11!}+\frac{12-1}{12!}+\frac{13-1}{13!}+...+\frac{2015-1}{2015!}\)

\(=\frac{11}{11!}-\frac{1}{11!}+\frac{12}{12!}-\frac{1}{12!}+\frac{13}{13!}-\frac{1}{13!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)

\(=\frac{11}{10!.11}-\frac{1}{11!}+\frac{12}{11!.12}-\frac{1}{12!}+\frac{13}{12!.13}-\frac{1}{13!}+...+\frac{2015}{2014!.2015}-\frac{1}{2015!}\)

\(=\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+\frac{1}{12!}-\frac{1}{13!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)

\(=\frac{1}{10!}-\frac{1}{2015!}< \frac{1}{10!}\)

28 tháng 7 2019

Bn tham khảo nhé:

Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath

~ rất vui vì giúp đc bn ~

26 tháng 8 2016

Ta có: \(\frac{1}{10}>\frac{1}{11};\frac{1}{10}>\frac{1}{12};....;\frac{1}{10}>\frac{1}{19}\)

=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< \frac{1}{10}.9\)

                                                \(=\frac{9}{10}< 1\)

Mà \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>0\)

=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}\) không là số tự nhiên (đpcm)

4 tháng 3 2016

giải nhanh

7 tháng 5 2019

S=3.(\(\frac{1}{10}\)+\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\))>3.(5.\(\frac{1}{14}\))>3.\(\frac{1}{3}\)=1

Vậy:S>1