K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

kết bạn mình nha

13 tháng 5 2016

câu hỏi tương tự có đấy:

26 tháng 2 2015

ta có n+13=n-2+15để n+13 lá p/s tối giẩn thì 15 và n+2 là p/s tối giản.

suy ra n+2 ko chia hết cho 3 và 5

suy ra n khác 3k+1 và 5k+3

20 tháng 2 2016

Gọi (n+13;n-2) là d

Ta có n+13 chia hết cho d; n-2 chia hết cho d

suy ra [(n+13)-(n-2)] chia hết cho d

suy ra 15 chia hết cho d và d thuộc ước của 15={1;3;5;15}

suy ra để n+13/n-2 là phân số tối giản thì d=1 và n+13 không chia hết cho 3; 5; 15

n-2 không chia hết cho 3;5;15

suy ra n+13 không chia hết cho 15

vì 13 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n+13 không chia hết cho 15

n-2 không chia hết cho 15

vì 2 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n-2 không chia hết cho 15

suy ra n chia hết cho 15 thì n+13/n-2 là phân số tối giản

1 tháng 4 2018

De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2

Gia su n + 13 chia het n - 2 ta co:

      n + 13 \(⋮\)n - 2 

=>  ( n + 13  - ( n -2 ) \(⋮\)n - 2

=> 15 \(⋮\)n - 2

=> n - 2\(\in\)Ư(15)

=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )

Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )

1 tháng 4 2018
  • \(\frac{n+13}{n-2}\)=\(\frac{\left(n-2\right)+15}{n-2}=\)\(1+\frac{15}{n-2}\)\(\Rightarrow\)n-2thuộcƯ(15)=(-15;-5-;-3;-1;1;3;5;15)
  • n-2-15-5-3-1+1+3+5+15
    n-13-3-1135717

    Vậy \(\frac{n+13}{n-2}\)là phân số tối giản

18 tháng 4 2018

\(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\)

\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\left(\frac{2010}{2010}+\frac{2}{2010}\right)\)\(=1+1+1+1+\frac{2}{2010}=4+2010\)\(< 4\)

Vậy S < 4

18 tháng 4 2018

xl bn mk nham bai khac

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

Gọi $d=ƯCLN(n+15,n+2)$

$\Rightarrow n+15\vdots d; n+2\vdots d$

$\Rightarrow (n+15)-(n+2)\vdots d$

$\Rightarrow 13\vdots d$

$\Rightarrow d=1$ hoặc $d=13$.

Để ps đã cho tối giản thì $d\neq 13$

$\Leftrightarrow n+2\not\vdots 13$

$\Leftrightarrow n\neq 13k-2$ với $k$ nguyên.

AH
Akai Haruma
Giáo viên
21 tháng 10 2024

Lời giải:

Gọi $d=ƯCLN(n+19, n-2)$

$\Rightarrow n+19\vdots d; n-2\vdots d$

$\Rightarrow (n+19)-(n-2)\vdots d$

$\Rightarrow 21\vdots d$

Để phân số đã cho tối giản, thì $(21,d)=1$, hay $(3,d)=(7,d)=1$

Để $(d,3)=1$ thì $n-2\not\vdots 3$

$\Rightarrow n\neq 3k+2$

Để $(d,7)=1$ thì $n-2\not\vdots 7$

$\Rightarrow n\neq 7m+2$

Vây $n$ không chia 3 dư 2 và không chia 7 dư 2 thì phân số trên tối giản.